Application of Natural Neighbor-based Algorithm on Oversampling SMOTE Algorithms

C. Srinilta, Sivakorn Kanharattanachai
{"title":"Application of Natural Neighbor-based Algorithm on Oversampling SMOTE Algorithms","authors":"C. Srinilta, Sivakorn Kanharattanachai","doi":"10.1109/ICEAST52143.2021.9426310","DOIUrl":null,"url":null,"abstract":"Classification performance depends highly on data distribution. In real life, data often come imbalanced where one class is found more often than others. SMOTE-based algorithms are usually used to handle the class imbalance problem. One key parameter that algorithms in SMOTE family require is k-the number of nearest neighbors with respect to a certain data point. K that fits the dataset the most gives the optimum performance. This paper proposes an approach to suggest a value of the parameter k using Natural Neighbor algorithm. Datasets are made balanced by four SMOTE-based algorithms–standard SMOTE, Safe-Level-SMOTE, ModifiedSMOTE and Weighted-SMOTE. The F-measure and Recall matrices are used to evaluate classification performance of a Support Vector Machine classifier running against six datasets with different imbalance ratios. The results show that, the average classification performance achieved by the proposed k’s is closer to the optimum when compared with the performance given by the default value of k.","PeriodicalId":416531,"journal":{"name":"2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAST52143.2021.9426310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Classification performance depends highly on data distribution. In real life, data often come imbalanced where one class is found more often than others. SMOTE-based algorithms are usually used to handle the class imbalance problem. One key parameter that algorithms in SMOTE family require is k-the number of nearest neighbors with respect to a certain data point. K that fits the dataset the most gives the optimum performance. This paper proposes an approach to suggest a value of the parameter k using Natural Neighbor algorithm. Datasets are made balanced by four SMOTE-based algorithms–standard SMOTE, Safe-Level-SMOTE, ModifiedSMOTE and Weighted-SMOTE. The F-measure and Recall matrices are used to evaluate classification performance of a Support Vector Machine classifier running against six datasets with different imbalance ratios. The results show that, the average classification performance achieved by the proposed k’s is closer to the optimum when compared with the performance given by the default value of k.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自然邻域算法在过采样SMOTE算法中的应用
分类性能高度依赖于数据分布。在现实生活中,数据往往是不平衡的,一个类比其他类更常见。基于smote的算法通常用于处理类不平衡问题。SMOTE家族中的算法需要的一个关键参数是k-相对于某个数据点的最近邻居的数量。最适合数据集的K给出了最佳性能。本文提出了一种利用自然邻域算法确定参数k值的方法。数据集通过四种基于SMOTE的算法进行平衡:标准SMOTE、安全级SMOTE、修改SMOTE和加权SMOTE。使用f测度和召回矩阵来评估支持向量机分类器在六个不同失衡率数据集上的分类性能。结果表明,与k的默认值相比,所提出的k的平均分类性能更接近于最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Application for Basic Computer Troubleshooting using TensorFlow Lite Exploitation of IoTs for PMU in Tethered Drone Multi-Tier Model with JSON-RPC in Telemedicine Devices Authentication and Authorization Protocol Neuro-fuzzy Model with Neighborhood Component Analysis for Air Quality Prediction Extremely Low-Power Fifth-Order Low-Pass Butterworth Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1