{"title":"Ultrathin GHz-speed free-space electro-optic modulators","authors":"Ileana-Cristina Benea-Chelmus","doi":"10.1109/MWP54208.2022.9997591","DOIUrl":null,"url":null,"abstract":"We discuss electro-optic modulators from flat optics that change the intensity of light at speeds up to the microwaves. We employ a hybrid platform that combines silicon-silica nanoresonators with an electro-optic organic coating that maximizes the interaction of the optical field with microwaves applied via gold electrodes patterned around single rows of resonators. By employing electric field poling of the coating, we engineer its nonlinearity in-device. The resulting in-plane periodically poled layer matches the polarity of the applied microwave field, thereby leading to a maximized electro-optic effect.","PeriodicalId":127318,"journal":{"name":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP54208.2022.9997591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss electro-optic modulators from flat optics that change the intensity of light at speeds up to the microwaves. We employ a hybrid platform that combines silicon-silica nanoresonators with an electro-optic organic coating that maximizes the interaction of the optical field with microwaves applied via gold electrodes patterned around single rows of resonators. By employing electric field poling of the coating, we engineer its nonlinearity in-device. The resulting in-plane periodically poled layer matches the polarity of the applied microwave field, thereby leading to a maximized electro-optic effect.