Healthy and Anomalous Beehives Classification Model using Convolutional Neural Networks

Tomás Child, G. Acuña
{"title":"Healthy and Anomalous Beehives Classification Model using Convolutional Neural Networks","authors":"Tomás Child, G. Acuña","doi":"10.1109/CLEI52000.2020.00008","DOIUrl":null,"url":null,"abstract":"One of the main problems in chilean beekeeping is the late diseases diagnosis that affects beehives. In this work, convolutional neuronal networks are used to create a system that detect beehives health by classifying the sound they emit represented by spectrograms. A dataset is made from audio registers recorded in Chile. From this data, two models for beehives classification are elaborated with different architectures. The model implemented through Transfer Learning obtains a high percentage of accuracy (0.9303 in validation) at classifying recordings according to their health condition, which is comparable to other related publications about Machine Learning applied in beekeeping.","PeriodicalId":413655,"journal":{"name":"2020 XLVI Latin American Computing Conference (CLEI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XLVI Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI52000.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main problems in chilean beekeeping is the late diseases diagnosis that affects beehives. In this work, convolutional neuronal networks are used to create a system that detect beehives health by classifying the sound they emit represented by spectrograms. A dataset is made from audio registers recorded in Chile. From this data, two models for beehives classification are elaborated with different architectures. The model implemented through Transfer Learning obtains a high percentage of accuracy (0.9303 in validation) at classifying recordings according to their health condition, which is comparable to other related publications about Machine Learning applied in beekeeping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的健康与异常蜂箱分类模型
智利养蜂业的主要问题之一是影响蜂箱的晚期疾病诊断。在这项工作中,卷积神经网络被用来创建一个系统,通过对蜂箱发出的声音进行分类来检测蜂箱的健康状况。一个数据集是由在智利录制的音频寄存器组成的。在此基础上,提出了两种结构不同的蜂箱分类模型。通过迁移学习实现的模型在根据健康状况对录音进行分类方面获得了很高的准确率(验证为0.9303),这与其他有关机器学习在养蜂中的应用的相关出版物相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
System with Optical Mark Recognition Based on Artificial Vision for the Processing of Multiple Selection Tests in School Competitions Predictive data analysis techniques applied to dropping out of university studies Real-Time Violence Detection in Videos Using Dynamic Images SECO-AM: An Approach for Maintenance of IT Architecture in Software Ecosystems A Mobile Crowdsensing-Based Solution for Online Bus Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1