{"title":"Healthy and Anomalous Beehives Classification Model using Convolutional Neural Networks","authors":"Tomás Child, G. Acuña","doi":"10.1109/CLEI52000.2020.00008","DOIUrl":null,"url":null,"abstract":"One of the main problems in chilean beekeeping is the late diseases diagnosis that affects beehives. In this work, convolutional neuronal networks are used to create a system that detect beehives health by classifying the sound they emit represented by spectrograms. A dataset is made from audio registers recorded in Chile. From this data, two models for beehives classification are elaborated with different architectures. The model implemented through Transfer Learning obtains a high percentage of accuracy (0.9303 in validation) at classifying recordings according to their health condition, which is comparable to other related publications about Machine Learning applied in beekeeping.","PeriodicalId":413655,"journal":{"name":"2020 XLVI Latin American Computing Conference (CLEI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XLVI Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI52000.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main problems in chilean beekeeping is the late diseases diagnosis that affects beehives. In this work, convolutional neuronal networks are used to create a system that detect beehives health by classifying the sound they emit represented by spectrograms. A dataset is made from audio registers recorded in Chile. From this data, two models for beehives classification are elaborated with different architectures. The model implemented through Transfer Learning obtains a high percentage of accuracy (0.9303 in validation) at classifying recordings according to their health condition, which is comparable to other related publications about Machine Learning applied in beekeeping.