{"title":"Circadian chronobiology of epilepsy: murine models of seizure susceptibility and theoretical perspectives for neurology.","authors":"C Poirel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>As an integrative discipline in physiology and medical research, chronobiology renders possible the discovery of new regulation processes regarding the central mechanisms of epilepsy. In this context, the temporal fluctuations of seizure susceptibility rhythmometrically detected tend to demonstrate 1. that tonic-clonic events are circadian stage-dependent processes whose temporal characteristics (i.e. MESOR, amplitude, acrophase) and clinical parameters (e.g. neurological components, severity of motor discharges) are predictable on the basis of mathematical models, and 2. that the generalized epileptic onsets may respond to telencephalic integrations modulated by centrencephalic circadian processes of vigilance. Considering the data model assumed for our rhythmometric analyses, the circadian psychophysiological patterns of epilepsy also express dynamic biologic systems which reveal some intermodulating endogenous processes between vigilance and seizure susceptibility. The new chronophysiology investigations considered at a rhythmometric level of resolution suggest several heuristic perspectives regarding 1. the central pathophysiology of epilepsy and 2. the behavioral classification of convulsive events. Such circadian studies also show that chronobiology raises some working hypotheses in psychophysiology and permits the development of new theoretical concepts in the field of neurological science.</p>","PeriodicalId":75705,"journal":{"name":"Chronobiologia","volume":"18 1","pages":"49-69"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronobiologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As an integrative discipline in physiology and medical research, chronobiology renders possible the discovery of new regulation processes regarding the central mechanisms of epilepsy. In this context, the temporal fluctuations of seizure susceptibility rhythmometrically detected tend to demonstrate 1. that tonic-clonic events are circadian stage-dependent processes whose temporal characteristics (i.e. MESOR, amplitude, acrophase) and clinical parameters (e.g. neurological components, severity of motor discharges) are predictable on the basis of mathematical models, and 2. that the generalized epileptic onsets may respond to telencephalic integrations modulated by centrencephalic circadian processes of vigilance. Considering the data model assumed for our rhythmometric analyses, the circadian psychophysiological patterns of epilepsy also express dynamic biologic systems which reveal some intermodulating endogenous processes between vigilance and seizure susceptibility. The new chronophysiology investigations considered at a rhythmometric level of resolution suggest several heuristic perspectives regarding 1. the central pathophysiology of epilepsy and 2. the behavioral classification of convulsive events. Such circadian studies also show that chronobiology raises some working hypotheses in psychophysiology and permits the development of new theoretical concepts in the field of neurological science.