SVD-QR-T FCM Approach for Virtual MIMO Channel Selection in Wireless Sensor Networks

Jinghan Liang, Q. Liang
{"title":"SVD-QR-T FCM Approach for Virtual MIMO Channel Selection in Wireless Sensor Networks","authors":"Jinghan Liang, Q. Liang","doi":"10.1109/WASA.2007.131","DOIUrl":null,"url":null,"abstract":"In this paper, we present singular-value decomposition- QR with threshold (SVD-QR-T) algorithm to select a subset of channels in virtual MIMO wireless sensor networks (WSN) in order to reduce its complexity and cost. SVD- QR-T selects best subset of transmitters while keeping all receivers active. The threshold is adaptive by means of fuzzy c-mean (FCM). Under the constraint of the same total transmission power, this approach is compared against the case without channel selection in terms of capacity, bit error rate (BER) and multiplexing gain in the presence of water-filling as well without. It is shown that in spite of less multiplexing gain, when water-filling is applied, SVD- QR-T FCM provides lower BER at moderate to high SNR; in case of equal transmission power allocation, SVD-QR-T FCM achieves higher capacity at low SNR and lower BER. In general, it provides satisfying performances compared to the case without channel selection but reduced cost and resource.","PeriodicalId":316831,"journal":{"name":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASA.2007.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we present singular-value decomposition- QR with threshold (SVD-QR-T) algorithm to select a subset of channels in virtual MIMO wireless sensor networks (WSN) in order to reduce its complexity and cost. SVD- QR-T selects best subset of transmitters while keeping all receivers active. The threshold is adaptive by means of fuzzy c-mean (FCM). Under the constraint of the same total transmission power, this approach is compared against the case without channel selection in terms of capacity, bit error rate (BER) and multiplexing gain in the presence of water-filling as well without. It is shown that in spite of less multiplexing gain, when water-filling is applied, SVD- QR-T FCM provides lower BER at moderate to high SNR; in case of equal transmission power allocation, SVD-QR-T FCM achieves higher capacity at low SNR and lower BER. In general, it provides satisfying performances compared to the case without channel selection but reduced cost and resource.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络中虚拟MIMO信道选择的SVD-QR-T FCM方法
为了降低虚拟MIMO无线传感器网络(WSN)的复杂度和成本,提出了奇异值分解QR带阈值(SVD-QR-T)算法来选择信道子集。SVD- QR-T选择发射机的最佳子集,同时保持所有接收机的活动。采用模糊c均值(FCM)自适应阈值。在总传输功率相同的约束下,将该方法与无信道选择的情况进行了容量、误码率(BER)和多路增益方面的比较。结果表明,尽管多路增益较低,但充水后,SVD- QR-T FCM在中高信噪比下具有较低的误码率;在传输功率分配均等的情况下,SVD-QR-T FCM在低信噪比和低误码率下实现了更高的容量。总的来说,与没有信道选择的情况相比,它提供了令人满意的性能,但降低了成本和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capacity Analysis for Flat and Clustered Wireless Sensor Networks Cluster-Based Minimum Mean Square Estimation for Secure and Resilient Localization in Wireless Sensor Networks Iterated Algorithms for the Minimum Energy Broadcast Tree Problem in Wireless Ad Hoc Networks A novel Cognitive Radio Concept deploying Petri Net based Scheduling R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1