Bayesian Model Selection of Exponential Time Series Through Adaptive Importance Sampling

W. B. Bishop, P. Djurić, D. E. Johnston
{"title":"Bayesian Model Selection of Exponential Time Series Through Adaptive Importance Sampling","authors":"W. B. Bishop, P. Djurić, D. E. Johnston","doi":"10.1109/SSAP.1994.572432","DOIUrl":null,"url":null,"abstract":"Information provided by the accurate model selection of exponential time series is indispensable in many areas of science and engineering. This paper presents a method for the simultaneous detection and estimation of signals composed of sums of damped exponentials in additive noise. The method is entirely Bayesian in that the utility of a marginalized posterior probability density allows for the formulation of a maximum a posteriori (MAP) model selection criterion. Numerical integrations are accomplished through the application of a computationally efficient algorithm known as Adaptive Importance Sampling (AIS). This procedure, which requires no knowledge regarding the functional form of the integrands and enforces parameter constraints with relative ease, presents itself as a welcome alternative to constrained multidimensional optimization. Monte-Carlo simulations on two component synthesized data indicate a n e table improvement in selection performance of the MAP over both, the AIC and MDL.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Information provided by the accurate model selection of exponential time series is indispensable in many areas of science and engineering. This paper presents a method for the simultaneous detection and estimation of signals composed of sums of damped exponentials in additive noise. The method is entirely Bayesian in that the utility of a marginalized posterior probability density allows for the formulation of a maximum a posteriori (MAP) model selection criterion. Numerical integrations are accomplished through the application of a computationally efficient algorithm known as Adaptive Importance Sampling (AIS). This procedure, which requires no knowledge regarding the functional form of the integrands and enforces parameter constraints with relative ease, presents itself as a welcome alternative to constrained multidimensional optimization. Monte-Carlo simulations on two component synthesized data indicate a n e table improvement in selection performance of the MAP over both, the AIC and MDL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应重要性抽样的指数时间序列贝叶斯模型选择
指数时间序列的精确模型选择所提供的信息在科学和工程的许多领域是不可缺少的。本文提出了一种同时检测和估计加性噪声中由阻尼指数和组成的信号的方法。该方法完全是贝叶斯的,因为边缘后验概率密度的效用允许制定最大后验(MAP)模型选择标准。数值积分是通过应用一种计算效率高的算法来完成的,这种算法被称为自适应重要性采样(AIS)。这个过程不需要关于被积函数形式的知识,并且相对容易地强制参数约束,它是约束多维优化的一个受欢迎的替代方案。对两分量合成数据的蒙特卡罗仿真表明,MAP的选择性能比AIC和MDL都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1