CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs

Xiaolong Xie, Wei Tan, L. Fong, Yun Liang
{"title":"CuMF_SGD: Parallelized Stochastic Gradient Descent for Matrix Factorization on GPUs","authors":"Xiaolong Xie, Wei Tan, L. Fong, Yun Liang","doi":"10.1145/3078597.3078602","DOIUrl":null,"url":null,"abstract":"Stochastic gradient descent (SGD) is widely used by many machine learning algorithms. It is efficient for big data ap- plications due to its low algorithmic complexity. SGD is inherently serial and its parallelization is not trivial. How to parallelize SGD on many-core architectures (e.g. GPUs) for high efficiency is a big challenge. In this paper, we present cuMF_SGD, a parallelized SGD solution for matrix factorization on GPUs. We first design high-performance GPU computation kernels that accelerate individual SGD updates by exploiting model parallelism. We then design efficient schemes that parallelize SGD updates by exploiting data parallelism. Finally, we scale cuMF SGD to large data sets that cannot fit into one GPU's memory. Evaluations on three public data sets show that cuMF_SGD outperforms existing solutions, including a 64- node CPU system, by a large margin using only one GPU card.","PeriodicalId":436194,"journal":{"name":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078597.3078602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Stochastic gradient descent (SGD) is widely used by many machine learning algorithms. It is efficient for big data ap- plications due to its low algorithmic complexity. SGD is inherently serial and its parallelization is not trivial. How to parallelize SGD on many-core architectures (e.g. GPUs) for high efficiency is a big challenge. In this paper, we present cuMF_SGD, a parallelized SGD solution for matrix factorization on GPUs. We first design high-performance GPU computation kernels that accelerate individual SGD updates by exploiting model parallelism. We then design efficient schemes that parallelize SGD updates by exploiting data parallelism. Finally, we scale cuMF SGD to large data sets that cannot fit into one GPU's memory. Evaluations on three public data sets show that cuMF_SGD outperforms existing solutions, including a 64- node CPU system, by a large margin using only one GPU card.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的矩阵分解并行化随机梯度下降
随机梯度下降(SGD)被广泛应用于许多机器学习算法中。由于其算法复杂度低,在大数据应用中效率高。SGD本质上是串行的,它的并行化不是微不足道的。如何在多核架构(例如gpu)上并行化SGD以获得高效率是一个很大的挑战。在本文中,我们提出了一种在gpu上用于矩阵分解的并行SGD解决方案cuMF_SGD。我们首先设计了高性能GPU计算内核,通过利用模型并行性来加速单个SGD更新。然后,我们设计了有效的方案,通过利用数据并行性来并行SGD更新。最后,我们将cuMF SGD扩展到一个GPU内存无法容纳的大型数据集。对三个公开数据集的评估表明,cuMF_SGD仅使用一个GPU卡就大大优于现有的解决方案,包括64节点CPU系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning in Cancer and Infectious Disease: Novel Driver Problems for Future HPC Architecture LetGo: A Lightweight Continuous Framework for HPC Applications Under Failures Explaining Wide Area Data Transfer Performance IOGP: An Incremental Online Graph Partitioning Algorithm for Distributed Graph Databases Better Safe than Sorry: Grappling with Failures of In-Memory Data Analytics Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1