EfficientNet-Based Deep Learning Approach for Breast Cancer Detection With Mammography Images

Shi Gengtian, Bing Bai, Guo-Jun Zhang
{"title":"EfficientNet-Based Deep Learning Approach for Breast Cancer Detection With Mammography Images","authors":"Shi Gengtian, Bing Bai, Guo-Jun Zhang","doi":"10.1109/ICCCS57501.2023.10151156","DOIUrl":null,"url":null,"abstract":"Breast cancer is a major health concern affecting women worldwide. Early detection and accurate diagnosis of breast cancer are crucial for improving patient outcomes. In recent years, deep learning techniques have been increasingly applied to medical imaging, including mammography, for the detection and diagnosis of breast cancer. In this study, we proposed a deep learning-based approach using the EfficientNet architecture for the detection and classification of breast cancer. We evaluated the performance of our proposed approach using mammography images from the CBIS-DDSM dataset and achieved accuracy of 0.75 and AUC of 0.83. Our results demonstrate the effectiveness of using deep learning techniques in medical imaging for breast cancer detection and diagnosis.","PeriodicalId":266168,"journal":{"name":"2023 8th International Conference on Computer and Communication Systems (ICCCS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS57501.2023.10151156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a major health concern affecting women worldwide. Early detection and accurate diagnosis of breast cancer are crucial for improving patient outcomes. In recent years, deep learning techniques have been increasingly applied to medical imaging, including mammography, for the detection and diagnosis of breast cancer. In this study, we proposed a deep learning-based approach using the EfficientNet architecture for the detection and classification of breast cancer. We evaluated the performance of our proposed approach using mammography images from the CBIS-DDSM dataset and achieved accuracy of 0.75 and AUC of 0.83. Our results demonstrate the effectiveness of using deep learning techniques in medical imaging for breast cancer detection and diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高效率网络的乳房x光图像乳腺癌检测的深度学习方法
乳腺癌是影响全世界妇女的一个主要健康问题。乳腺癌的早期发现和准确诊断对于改善患者的预后至关重要。近年来,深度学习技术越来越多地应用于医学成像,包括乳房x光检查,以检测和诊断乳腺癌。在这项研究中,我们提出了一种基于深度学习的方法,使用effentnet架构来检测和分类乳腺癌。我们使用来自CBIS-DDSM数据集的乳房x线摄影图像评估了我们提出的方法的性能,并获得了0.75的准确度和0.83的AUC。我们的研究结果证明了在医学成像中使用深度学习技术进行乳腺癌检测和诊断的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial-Temporal Multimodal End-to-End Autonomous Driving Research on Secret Sharing for Cyberspace Mimic Defense Electromagnetic Energy Theorems and the Energy-Viewpoint-Based Modal Analysis Theories Design and Research of the Whole Process Non-blocking Technology in High Concurrency Scenario Electromagnetic Modal Analysis for Multiple- Ports-Fed Antenna Array: From Waveguide-Array Integrative Analysis to Amplitude-Phase Factor Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1