Adversarial Examples to Fool Iris Recognition Systems

Sobhan Soleymani, Ali Dabouei, J. Dawson, N. Nasrabadi
{"title":"Adversarial Examples to Fool Iris Recognition Systems","authors":"Sobhan Soleymani, Ali Dabouei, J. Dawson, N. Nasrabadi","doi":"10.1109/ICB45273.2019.8987389","DOIUrl":null,"url":null,"abstract":"Adversarial examples have recently proven to be able to fool deep learning methods by adding carefully crafted small perturbation to the input space image. In this paper, we study the possibility of generating adversarial examples for code-based iris recognition systems. Since generating adversarial examples requires back-propagation of the adversarial loss, conventional filter bank-based iris-code generation frameworks cannot be employed in such a setup. Therefore, to compensate for this shortcoming, we propose to train a deep auto-encoder surrogate network to mimic the conventional iris code generation procedure. This trained surrogate network is then deployed to generate the adversarial examples using the iterative gradient sign method algorithm [15]. We consider non-targeted and targeted attacks through three attack scenarios. Considering these attacks, we study the possibility of fooling an iris recognition system in white-box and black-box frameworks.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Adversarial examples have recently proven to be able to fool deep learning methods by adding carefully crafted small perturbation to the input space image. In this paper, we study the possibility of generating adversarial examples for code-based iris recognition systems. Since generating adversarial examples requires back-propagation of the adversarial loss, conventional filter bank-based iris-code generation frameworks cannot be employed in such a setup. Therefore, to compensate for this shortcoming, we propose to train a deep auto-encoder surrogate network to mimic the conventional iris code generation procedure. This trained surrogate network is then deployed to generate the adversarial examples using the iterative gradient sign method algorithm [15]. We consider non-targeted and targeted attacks through three attack scenarios. Considering these attacks, we study the possibility of fooling an iris recognition system in white-box and black-box frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欺骗虹膜识别系统的对抗性示例
对抗性示例最近被证明能够通过在输入空间图像中添加精心制作的小扰动来欺骗深度学习方法。在本文中,我们研究了为基于代码的虹膜识别系统生成对抗性示例的可能性。由于生成对抗性示例需要对抗性损失的反向传播,因此传统的基于滤波器组的虹膜代码生成框架不能用于这种设置。因此,为了弥补这一缺点,我们建议训练一个深度自动编码器代理网络来模拟传统的虹膜代码生成过程。然后使用迭代梯度符号法算法部署这个训练好的代理网络来生成对抗性示例[15]。我们通过三种攻击场景来考虑非目标攻击和目标攻击。考虑到这些攻击,我们研究了在白盒和黑盒框架下欺骗虹膜识别系统的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PPG2Live: Using dual PPG for active authentication and liveness detection A New Approach for EEG-Based Biometric Authentication Using Auditory Stimulation A novel scheme to address the fusion uncertainty in multi-modal continuous authentication schemes on mobile devices Sclera Segmentation Benchmarking Competition in Cross-resolution Environment Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1