A Novel Approach for On-line Encoding Algorithm Using A Generating Function

N. Punthong, A. Surarerks
{"title":"A Novel Approach for On-line Encoding Algorithm Using A Generating Function","authors":"N. Punthong, A. Surarerks","doi":"10.1109/ISPACS.2006.364801","DOIUrl":null,"url":null,"abstract":"An encoding technique is an interesting problem in information theory (i.e., how to reduce the size of the textual material when information is continually sent from one point to another.) The important factors to improve efficiency of the encoding process are probability distribution and dependency of the input data. Some encoding algorithms focused on these factors are Huffman algorithm, Lempel-Ziv algorithm and enhance versions of them. In some cases, dependency of the input data is not significant, but the probability distribution remains considerable. In this paper, we propose a novel approach for an on-line encoding algorithm using a generating function that the encoding process performs in an on-line manner. Our concept is that the generating function must be constructed up to the probability distribution. Some experimental results show that our technique can apply to the normal distribution of input data","PeriodicalId":178644,"journal":{"name":"2006 International Symposium on Intelligent Signal Processing and Communications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Intelligent Signal Processing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2006.364801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An encoding technique is an interesting problem in information theory (i.e., how to reduce the size of the textual material when information is continually sent from one point to another.) The important factors to improve efficiency of the encoding process are probability distribution and dependency of the input data. Some encoding algorithms focused on these factors are Huffman algorithm, Lempel-Ziv algorithm and enhance versions of them. In some cases, dependency of the input data is not significant, but the probability distribution remains considerable. In this paper, we propose a novel approach for an on-line encoding algorithm using a generating function that the encoding process performs in an on-line manner. Our concept is that the generating function must be constructed up to the probability distribution. Some experimental results show that our technique can apply to the normal distribution of input data
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于生成函数的在线编码算法
编码技术是信息论中的一个有趣的问题(即,当信息不断地从一个点发送到另一个点时,如何减小文本材料的大小)。提高编码效率的重要因素是输入数据的概率分布和相关性。针对这些因素的编码算法有Huffman算法、Lempel-Ziv算法及其增强版。在某些情况下,输入数据的依赖性并不显著,但概率分布仍然相当可观。在本文中,我们提出了一种新的在线编码算法的方法,使用一个生成函数,编码过程以在线方式执行。我们的概念是生成函数必须按照概率分布构造。实验结果表明,该方法适用于输入数据的正态分布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossy Strict Multilevel Successive Elimination Algorithm for Fast Motion Estimation A Subpixel Image Matching Technique Using Phase-Only Correlation Phase Unwrapping of Self-mixing Signals Observed in Optical Feedback Interferometry for Displacement Measurement A Low-Power and Low-Noise Amplifier for 3-5GHz UWB Applications Automatic Image Annotation based-on Rough Set Theory with Visual Keys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1