Magnetic Resonance Image Reconstruction using Inception-based Convolutional Neural Network

Elmira Vafay Eslahi, A. Baniasadi
{"title":"Magnetic Resonance Image Reconstruction using Inception-based Convolutional Neural Network","authors":"Elmira Vafay Eslahi, A. Baniasadi","doi":"10.5121/csit.2023.130307","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) is one of the best imaging techniques that produce highquality images of objects. The long scan time is one of the biggest challenges in MRI acquisitions. To address this challenge, many researchers have aimed at finding methods to speed up the process. Faster MRI can reduce patient discomfort and motion artifacts. Many reconstruction methods are used in this matter, like deep learning-based MRI reconstruction, parallel MRI, and compressive sensing. Among these techniques, the convolutional neural network (CNN) generates high-quality images with faster scan and reconstruction procedures compared to the other techniques. The Inception module proposed by Google inspires the algorithm of this study for MRI reconstruction. In other words, we introduce a new MRI U-Net modification by using the Inception module. Our method is more flexible and robust compared to the standard U-Net.","PeriodicalId":299543,"journal":{"name":"Natural Language Processing, Information Retrieval and AI","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing, Information Retrieval and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.130307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance imaging (MRI) is one of the best imaging techniques that produce highquality images of objects. The long scan time is one of the biggest challenges in MRI acquisitions. To address this challenge, many researchers have aimed at finding methods to speed up the process. Faster MRI can reduce patient discomfort and motion artifacts. Many reconstruction methods are used in this matter, like deep learning-based MRI reconstruction, parallel MRI, and compressive sensing. Among these techniques, the convolutional neural network (CNN) generates high-quality images with faster scan and reconstruction procedures compared to the other techniques. The Inception module proposed by Google inspires the algorithm of this study for MRI reconstruction. In other words, we introduce a new MRI U-Net modification by using the Inception module. Our method is more flexible and robust compared to the standard U-Net.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于初始化卷积神经网络的磁共振图像重建
磁共振成像(MRI)是产生高质量物体图像的最佳成像技术之一。扫描时间长是MRI采集的最大挑战之一。为了应对这一挑战,许多研究人员致力于寻找加速这一过程的方法。更快的核磁共振成像可以减少患者的不适和运动伪影。在这个问题上使用了许多重建方法,如基于深度学习的MRI重建,并行MRI和压缩感知。在这些技术中,卷积神经网络(CNN)与其他技术相比,以更快的扫描和重建过程生成高质量的图像。Google提出的Inception模块启发了本研究的MRI重构算法。换句话说,我们通过使用Inception模块引入了一个新的MRI U-Net修改。与标准的U-Net相比,我们的方法更加灵活和健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey on IoT-based Smart-Grid Overview An Entity Registry: A Model for a Repository of Entities Found in a Document Set UAV as Auxiliary Base Station uses Deep Learning to Conduct Research on Network Resource Allocation Design that uses AI to Subvert Stereotypes: Make Witches Wicked Again ROS-based Intelligent Vital Sign Monitoring Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1