Adaptive Control/Identification for Hybrid Systems, Part II: with Linear-growth-order Discrete Regressor

M. Maghenem, Adnane Saoud, A. Loría
{"title":"Adaptive Control/Identification for Hybrid Systems, Part II: with Linear-growth-order Discrete Regressor","authors":"M. Maghenem, Adnane Saoud, A. Loría","doi":"10.23919/ACC53348.2022.9867414","DOIUrl":null,"url":null,"abstract":"In this and the companion paper [1] we propose a direct-adaptive-control framework for hybrid dynamical systems with unknown parameters. The approach addresses both the tracking-control and the parameter-estimation problems and relies on Lyapunov theory for hybrid systems. In this paper, we extend the main results of [1] to deal with hybrid systems that contain a regressor that is of linear order of growth, thereby relaxing the boundedness restriction imposed in [1]. As in the latter reference, the statements rely on Lyapunov theory for hybrid systems and we establish uniform global asymptotic stability in closed loop. In particular, parameter-estimation convergence is guaranteed when a generic hybrid persistence of excitation condition on the pair of discrete and continuous regressor functions holds. On the other hand, the relaxation of the boundedness assumption relies on a higher-order adaptation law.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this and the companion paper [1] we propose a direct-adaptive-control framework for hybrid dynamical systems with unknown parameters. The approach addresses both the tracking-control and the parameter-estimation problems and relies on Lyapunov theory for hybrid systems. In this paper, we extend the main results of [1] to deal with hybrid systems that contain a regressor that is of linear order of growth, thereby relaxing the boundedness restriction imposed in [1]. As in the latter reference, the statements rely on Lyapunov theory for hybrid systems and we establish uniform global asymptotic stability in closed loop. In particular, parameter-estimation convergence is guaranteed when a generic hybrid persistence of excitation condition on the pair of discrete and continuous regressor functions holds. On the other hand, the relaxation of the boundedness assumption relies on a higher-order adaptation law.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合系统的自适应控制/辨识,第二部分:线性增长阶离散回归器
在这篇论文和配套论文[1]中,我们提出了一个具有未知参数的混合动力系统的直接自适应控制框架。该方法解决了混合系统的跟踪控制和参数估计问题,并依赖于李雅普诺夫理论。在本文中,我们将[1]的主要结果推广到包含线性增长阶回归量的混合系统,从而放宽[1]的有界性限制。在后面的参考文献中,这些陈述依赖于混合系统的Lyapunov理论,并且我们建立了闭环中的一致全局渐近稳定性。特别是,当离散和连续回归函数对上激励条件的一般混合持续性保持时,参数估计的收敛性得到保证。另一方面,有界性假设的松弛依赖于高阶适应律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1