Behavioral malware analysis algorithm comparison

Matus Uchnar, P. Fecilak
{"title":"Behavioral malware analysis algorithm comparison","authors":"Matus Uchnar, P. Fecilak","doi":"10.1109/SAMI.2019.8782717","DOIUrl":null,"url":null,"abstract":"Malware analysis and detection based on it is very important factor in the computer security. Despite of the enormous effort of companies making anti-malware solutions, it is usually not possible to respond to new malware in time and some computers will get infected. This shortcoming could be partially mitigated through using behavioral malware analysis. This work is aimed towards machine learning algorithms comparison for the behavioral malware analysis purposes.","PeriodicalId":240256,"journal":{"name":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2019.8782717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Malware analysis and detection based on it is very important factor in the computer security. Despite of the enormous effort of companies making anti-malware solutions, it is usually not possible to respond to new malware in time and some computers will get infected. This shortcoming could be partially mitigated through using behavioral malware analysis. This work is aimed towards machine learning algorithms comparison for the behavioral malware analysis purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行为恶意软件分析算法比较
基于它的恶意软件分析与检测是影响计算机安全的重要因素。尽管公司在反恶意软件解决方案上付出了巨大的努力,但通常不可能及时响应新的恶意软件,一些计算机将被感染。这个缺点可以通过使用行为恶意软件分析部分缓解。这项工作旨在为行为恶意软件分析目的进行机器学习算法比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Navigation Based on Fuzzy Cognitive Maps for Needs of Ubiquitous Robotics WiFi vulnerability caused by SSID forgery in the IEEE 802.11 protocol Optimizing the use of renewable energy sources in the energy mix of Hungary Laboratory in Cloud for Model Systems of System Based Engineering Structures FEM analysis of natural frequencies of jet engine iSTC-21v turbine blade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1