{"title":"Multiscalar Architectures","authors":"Mark A. Wilson","doi":"10.1093/oso/9780192896469.003.0005","DOIUrl":null,"url":null,"abstract":"Many of the great advances in modern computing are supplied by modeling architectures that practice a crucial division in descriptive labor by asking distinct forms of submodeling to work together in cooperative harmony without engaging in a straightforward amalgamation of conclusions. Commonly these distinct submodels are aligned with characteristic scale lengths within their target systems so that a preliminary modeling (ΔH) that calculates how a system normally behaves upon a macroscopic scale becomes subjected to corrective suggestions arising from a lower-scale modeling (ΔL) that focuses upon the local factors that occasionally upset the behavioral presumptions codified within the ΔH scheme. The syntactic safeguards within this technique that avert inconsistency and an unmanageable explosion in computational complexity keep their various levels of submodeling isolated from one another. They only pass corrective messages of a specialized character (called “homogenizations”) amongst themselves without attempting to fully amalgamate their localized conclusions into a shared narrative. The computational architecture merely demands that the various submodels reach accord with respect to the homogenization messages that they exchange amongst themselves. This book argues that unnoticed reasoning arrangements of this kind provide the proper diagnosis of the “Mystery of Physics 101” tensions that troubled Hertz (the distinct usages of “force” he noticed operate upon distinct size scales in the manner of a modern multiscalar scheme). It is then suggested that the natural development of many forms of linguistic attainment lead to reasoning architectures of this general character, although we often fail to recognize the subtle strategies that undergird their operations.","PeriodicalId":370964,"journal":{"name":"Imitation of Rigor","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imitation of Rigor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192896469.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many of the great advances in modern computing are supplied by modeling architectures that practice a crucial division in descriptive labor by asking distinct forms of submodeling to work together in cooperative harmony without engaging in a straightforward amalgamation of conclusions. Commonly these distinct submodels are aligned with characteristic scale lengths within their target systems so that a preliminary modeling (ΔH) that calculates how a system normally behaves upon a macroscopic scale becomes subjected to corrective suggestions arising from a lower-scale modeling (ΔL) that focuses upon the local factors that occasionally upset the behavioral presumptions codified within the ΔH scheme. The syntactic safeguards within this technique that avert inconsistency and an unmanageable explosion in computational complexity keep their various levels of submodeling isolated from one another. They only pass corrective messages of a specialized character (called “homogenizations”) amongst themselves without attempting to fully amalgamate their localized conclusions into a shared narrative. The computational architecture merely demands that the various submodels reach accord with respect to the homogenization messages that they exchange amongst themselves. This book argues that unnoticed reasoning arrangements of this kind provide the proper diagnosis of the “Mystery of Physics 101” tensions that troubled Hertz (the distinct usages of “force” he noticed operate upon distinct size scales in the manner of a modern multiscalar scheme). It is then suggested that the natural development of many forms of linguistic attainment lead to reasoning architectures of this general character, although we often fail to recognize the subtle strategies that undergird their operations.