Logic Resynthesis of Majority-Based Circuits by Top-Down Decomposition

Siang-Yun Lee, Heinz Riener, G. Micheli
{"title":"Logic Resynthesis of Majority-Based Circuits by Top-Down Decomposition","authors":"Siang-Yun Lee, Heinz Riener, G. Micheli","doi":"10.1109/DDECS52668.2021.9417058","DOIUrl":null,"url":null,"abstract":"Logic resynthesis is the problem of finding a dependency function to re-express a given Boolean function in terms of a given set of divisor functions. In this paper, we study logic resynthesis of majority-based circuits, which is motivated by the increasing interest in majority logic optimization due to the recent development of beyond-CMOS technologies. To meet the need for an efficient majority resynthesis heuristic, we propose a top-down decomposition algorithm, whose complexity is linear to both n and m, where n is the number of divisors and m is the number of majority operations in the dependency function. We evaluate the resynthesis algorithms by using them in a resubstitution run applied on the EPFL benchmark suite. The experimental results show that, comparing to the state-of-the-art enumeration algorithm whose complexity grows exponentially with m, using the proposed decomposition Algorithm 1eads to 1.5% more circuit size reduction by lifting the limitation on m, within comparable runtime.","PeriodicalId":415808,"journal":{"name":"2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS52668.2021.9417058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Logic resynthesis is the problem of finding a dependency function to re-express a given Boolean function in terms of a given set of divisor functions. In this paper, we study logic resynthesis of majority-based circuits, which is motivated by the increasing interest in majority logic optimization due to the recent development of beyond-CMOS technologies. To meet the need for an efficient majority resynthesis heuristic, we propose a top-down decomposition algorithm, whose complexity is linear to both n and m, where n is the number of divisors and m is the number of majority operations in the dependency function. We evaluate the resynthesis algorithms by using them in a resubstitution run applied on the EPFL benchmark suite. The experimental results show that, comparing to the state-of-the-art enumeration algorithm whose complexity grows exponentially with m, using the proposed decomposition Algorithm 1eads to 1.5% more circuit size reduction by lifting the limitation on m, within comparable runtime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自顶向下分解的多数电路逻辑再合成
逻辑重组是用一组给定的除数函数重新表示一个给定布尔函数的依赖函数。在本文中,我们研究基于多数电路的逻辑重合成,这是由于最近超越cmos技术的发展对多数逻辑优化的兴趣日益增加而引起的。为了满足有效的多数重合成启发式算法的需要,我们提出了一种自顶向下的分解算法,其复杂度对n和m都是线性的,其中n为相依函数中的除数,m为多数操作的次数。我们通过在应用于EPFL基准套件的重新替换运行中使用它们来评估重新合成算法。实验结果表明,与复杂度随m呈指数增长的最先进的枚举算法相比,在相同的运行时间内,使用所提出的分解算法1通过提高对m的限制,可以将电路尺寸减少1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AdequateDL: Approximating Deep Learning Accelerators EKV MOS Transistor Model For Ultra Low-Voltage Bulk-Driven IC Design Efficient Acceleration of Decision Tree Algorithms for Encrypted Network Traffic Analysis A Parameterizable Chisel Generator of Numerically Controlled Oscillators for Direct Digital Synthesis Using Model Checker to Analyze and Test Digital Circuits with Regard to Delay Faults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1