Research on Modulation Classification of MQAM Signals Using Joint Moments

Ning An, Bingbing Li, M. Huang
{"title":"Research on Modulation Classification of MQAM Signals Using Joint Moments","authors":"Ning An, Bingbing Li, M. Huang","doi":"10.1109/ICCSN.2010.32","DOIUrl":null,"url":null,"abstract":"Automatic modulation classification (AMC) is a scheme to identify the data samples automatically. Usually, in wireless communication, especially through the Rayleigh fading channel, AMC performance will severe degrade. This paper presents a new method for AMC, using a modified Joint Power Estimation and modulation types of the transmitted signals by observing the receive Modulation Classification (JPEMC) algorithm. The advantage of our new algorithm is we don’t need the channel information as a priori. The Monte Carlo simulation shows that the performance of our algorithm can be better than the existing AMC algorithms.","PeriodicalId":255246,"journal":{"name":"2010 Second International Conference on Communication Software and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Communication Software and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatic modulation classification (AMC) is a scheme to identify the data samples automatically. Usually, in wireless communication, especially through the Rayleigh fading channel, AMC performance will severe degrade. This paper presents a new method for AMC, using a modified Joint Power Estimation and modulation types of the transmitted signals by observing the receive Modulation Classification (JPEMC) algorithm. The advantage of our new algorithm is we don’t need the channel information as a priori. The Monte Carlo simulation shows that the performance of our algorithm can be better than the existing AMC algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关节矩的MQAM信号调制分类研究
自动调制分类(AMC)是一种自动识别数据样本的方案。通常在无线通信中,特别是通过瑞利衰落信道时,AMC的性能会严重下降。本文通过观察接收调制分类(JPEMC)算法,提出了一种改进的联合功率估计和发送信号调制类型的AMC方法。新算法的优点是我们不需要先验的信道信息。蒙特卡罗仿真表明,该算法的性能优于现有的AMC算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of HVAC System Through Wireless Sensor Network IPv6 MANET: An Essential Technology for Future Pervasive Computing Testability Models for Structured Programs Mobile Web Services in Health Care and Sensor Networks Modeling and Simulation of BLDC Motor Using Soft Computing Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1