A review of feature selection in sentiment analysis using information gain and domain specific ontology

I. Ahmad, A. Bakar, Mohd Ridzwan Yaakub
{"title":"A review of feature selection in sentiment analysis using information gain and domain specific ontology","authors":"I. Ahmad, A. Bakar, Mohd Ridzwan Yaakub","doi":"10.19101/ijacr.pid90","DOIUrl":null,"url":null,"abstract":"There is a continued interest in understanding people’s interest through the contents they share online. However, the data generated is massive, characterized by textual jargons and tokens that contain no sentiment or opinion value. One way of reducing the data dimension and pruning of irrelevant features is feature selection. However, the existing approaches of feature selection are still inefficient. Two prominent feature selection methods in sentiment analysis are information gain and ontology-based methods. Information gain has the disadvantage of not considering redundancy between features while ontology-based approach requires a lot of human intervention. The aim of this paper is to review these two methods. The review of these two methods shows that using the two methods in a two-step approach can overcome their limitations and provide an optimal feature set for sentiment analysis.","PeriodicalId":273530,"journal":{"name":"International Journal of Advanced Computer Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19101/ijacr.pid90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

There is a continued interest in understanding people’s interest through the contents they share online. However, the data generated is massive, characterized by textual jargons and tokens that contain no sentiment or opinion value. One way of reducing the data dimension and pruning of irrelevant features is feature selection. However, the existing approaches of feature selection are still inefficient. Two prominent feature selection methods in sentiment analysis are information gain and ontology-based methods. Information gain has the disadvantage of not considering redundancy between features while ontology-based approach requires a lot of human intervention. The aim of this paper is to review these two methods. The review of these two methods shows that using the two methods in a two-step approach can overcome their limitations and provide an optimal feature set for sentiment analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息增益和领域本体的情感分析特征选择研究综述
通过人们在网上分享的内容来了解他们的兴趣是一种持续的兴趣。然而,生成的数据是巨大的,其特征是文本术语和不包含情感或意见价值的令牌。特征选择是降低数据维数和修剪无关特征的一种方法。然而,现有的特征选择方法仍然效率低下。情感分析中两种主要的特征选择方法是信息增益和基于本体的方法。信息增益的缺点是不考虑特征之间的冗余,而基于本体的方法需要大量的人为干预。本文的目的是对这两种方法进行综述。对这两种方法的回顾表明,在两步方法中使用这两种方法可以克服它们的局限性,并为情感分析提供最佳特征集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic urban boundary delineation in equatorial regions using SAR imagery: a comprehensive approach with decomposition, morphology, and statistical active contours The barriers and prospects related to big data analytics implementation in public institutions: a systematic review analysis Enhancing data analysis through k-means with foggy centroid selection Hybrid chaotic whale-shark optimization algorithm to improve artificial neural network: application to the skin neglected tropical diseases diagnosis A review and analysis for the text-based classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1