Terahertz Quasi-Time Domain Spectroscopy using a 808nm multimode diode laser

I. C. Verona, A. De los Reyes, H. Bardolaza, E. Estacio
{"title":"Terahertz Quasi-Time Domain Spectroscopy using a 808nm multimode diode laser","authors":"I. C. Verona, A. De los Reyes, H. Bardolaza, E. Estacio","doi":"10.14710/jpa.v5i2.17945","DOIUrl":null,"url":null,"abstract":"We report on a terahertz quasi-time domain spectroscopy (QTDS) system based on a low-cost continuous wave multimode diode laser. Commercially available low-temperature grown gallium arsenide (LT-GaAs) based photoconductive antennas (PCAs) with spiral and dipole configurations were used as emitter and detector, respectively. Terahertz pulses spaced at approximately 55 ps with a bandwidth of 400 GHz were obtained. Parametric measurements of the terahertz peak-to-peak intensity were performed by varying the injection current and temperature while maintaining incident laser power. The highest peak-to-peak intensity was obtained at 170mA injection current and 20° C temperature settings. The change in the THz peak-to-peak intensity is attributed to the mode hopping characteristics of the device which in turn, is dependent on injection current and temperature.","PeriodicalId":280868,"journal":{"name":"Journal of Physics and Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jpa.v5i2.17945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report on a terahertz quasi-time domain spectroscopy (QTDS) system based on a low-cost continuous wave multimode diode laser. Commercially available low-temperature grown gallium arsenide (LT-GaAs) based photoconductive antennas (PCAs) with spiral and dipole configurations were used as emitter and detector, respectively. Terahertz pulses spaced at approximately 55 ps with a bandwidth of 400 GHz were obtained. Parametric measurements of the terahertz peak-to-peak intensity were performed by varying the injection current and temperature while maintaining incident laser power. The highest peak-to-peak intensity was obtained at 170mA injection current and 20° C temperature settings. The change in the THz peak-to-peak intensity is attributed to the mode hopping characteristics of the device which in turn, is dependent on injection current and temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用808nm多模二极管激光器的太赫兹准时域光谱
报道了一种基于低成本连续波多模二极管激光器的太赫兹准时域光谱系统。采用螺旋形和偶极子结构的低温生长砷化镓(light - gaas)光导天线(PCAs)分别作为发射器和探测器。获得了间隔约为55 ps、带宽为400 GHz的太赫兹脉冲。在保持入射激光功率的情况下,通过改变注入电流和温度来进行太赫兹峰对峰强度的参数测量。在170mA注入电流和20°C温度设置下,峰对峰强度最高。太赫兹峰对峰强度的变化归因于器件的模式跳变特性,而该特性又依赖于注入电流和温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Percentage Depth Doses with the Published Data for Co-60 Radiotherapy Machine at a Regional Cancer Hospital Effectiveness of Noise Barriers Based on Waste Materials in Case Study of Residential Noise Due to Double-Track Railways Development of Sasirangan Liquid Waste Treatment System Using Ozonization Method Using Composite Ceramic Filter Media Based on Water Chestnut (Eleocharis Dulcis) Optical Response of Various Heavy Metal Ions-Based Carbon Dots Photoluminescent Quenching Effect Analysis of Clay Mineral Transformation in Plambik Village, Central Lombok Using X-Ray Diffraction and Scanning Electron Microscope Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1