A New Julia-Based Parallel Time-Domain Simulation Algorithm for Analysis of Power System Dynamics

Michael Kyesswa, Philipp Schmurr, H. Çakmak, U. Kühnapfel, V. Hagenmeyer
{"title":"A New Julia-Based Parallel Time-Domain Simulation Algorithm for Analysis of Power System Dynamics","authors":"Michael Kyesswa, Philipp Schmurr, H. Çakmak, U. Kühnapfel, V. Hagenmeyer","doi":"10.1109/DS-RT50469.2020.9213602","DOIUrl":null,"url":null,"abstract":"The present paper describes a new parallel time-domain simulation algorithm using a high performance computing environment - Julia - for the analysis of power system dynamics in large networks. The parallel algorithm adapts a parallel-in-space decomposition scheme to a previously sequential algorithm in order to develop a new parallelizable numerical solution of the power system equations. The parallel-in-space decomposition is based on the block bordered diagonal form, which reformulates the network admittance matrix into sub-blocks that can be solved in parallel. For the optimal spatial decomposition of the network, a new extended graph partitioning strategy is developed for load balancing and minimizing the communication between subnetworks. The new parallel simulation algorithm is tested using standard test networks of varying complexity. The simulation results are compared to those obtained from a sequential implementation in order to validate the solution accuracy and to determine the performance improvement in terms of computational speedup. Test simulations are conducted using the ForHLR II supercomputing cluster and show a huge potential in computational speedup with increasing network complexity.","PeriodicalId":149260,"journal":{"name":"2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT50469.2020.9213602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The present paper describes a new parallel time-domain simulation algorithm using a high performance computing environment - Julia - for the analysis of power system dynamics in large networks. The parallel algorithm adapts a parallel-in-space decomposition scheme to a previously sequential algorithm in order to develop a new parallelizable numerical solution of the power system equations. The parallel-in-space decomposition is based on the block bordered diagonal form, which reformulates the network admittance matrix into sub-blocks that can be solved in parallel. For the optimal spatial decomposition of the network, a new extended graph partitioning strategy is developed for load balancing and minimizing the communication between subnetworks. The new parallel simulation algorithm is tested using standard test networks of varying complexity. The simulation results are compared to those obtained from a sequential implementation in order to validate the solution accuracy and to determine the performance improvement in terms of computational speedup. Test simulations are conducted using the ForHLR II supercomputing cluster and show a huge potential in computational speedup with increasing network complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于julia的电力系统动力学分析并行时域仿真算法
本文提出了一种基于高性能计算环境Julia的大型电网电力系统动态分析并行时域仿真算法。该算法将空间并行分解方法应用于原有的顺序分解算法,从而得到一种新的可并行化的电力系统方程数值解。空间并行分解基于块边界对角线形式,将网络导纳矩阵重构为可并行求解的子块。为了实现网络的最优空间分解,提出了一种新的扩展图划分策略,以实现负载均衡和最小化子网间的通信。采用不同复杂度的标准测试网络对新的并行仿真算法进行了测试。将仿真结果与顺序实现的结果进行比较,以验证解的准确性,并确定在计算加速方面的性能改进。使用ForHLR II超级计算集群进行了测试模拟,并显示出随着网络复杂性的增加,计算加速的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collision Avoidance Proposal in a MEC based VANET environment Session-level Adversary Intent-Driven Cyberattack Simulator Pitfalls and Remedies in Modeling and Simulation of Cyber Physical Systems Real-Time Simulation of Robot Swarms with Restricted Communication Skills Laying the path to consumer-level immersive simulation environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1