Direction estimation using time-varying arrays

A. Zeira, B. Friedlander
{"title":"Direction estimation using time-varying arrays","authors":"A. Zeira, B. Friedlander","doi":"10.1109/ACSSC.1993.342397","DOIUrl":null,"url":null,"abstract":"Considers the problem of finding the directions of narrowband signals using a time-varying array, i.e., an array whose elements move during the observation interval in an arbitrary but known way. The authors derive the Cramer Rao bound and the maximum likelihood estimator for the direction-of-arrival estimates, for the Gaussian signal model. The single source case is studied in detail. Time-varying arrays are shown to be more robust to ambiguity errors than static arrays of comparable dimensions.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considers the problem of finding the directions of narrowband signals using a time-varying array, i.e., an array whose elements move during the observation interval in an arbitrary but known way. The authors derive the Cramer Rao bound and the maximum likelihood estimator for the direction-of-arrival estimates, for the Gaussian signal model. The single source case is studied in detail. Time-varying arrays are shown to be more robust to ambiguity errors than static arrays of comparable dimensions.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变阵列方向估计
考虑使用时变阵列(即其元素在观测间隔内以任意但已知的方式移动的阵列)查找窄带信号方向的问题。对于高斯信号模型,给出了到达方向估计的Cramer - Rao界和极大似然估计。对单源情况进行了详细的研究。时变数组显示出比具有可比维度的静态数组对歧义误差更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating error diffusion kernel from error diffused images Optical-to-SAR image registration using the active contour model Efficient organization of large ship radar databases using wavelets and structured vector quantization Signal processing using the generalized Taylor series expansion Evaluation of a model based data fusion algorithm with multi-mode OTHR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1