Entity Type Prediction Leveraging Graph Walks and Entity Descriptions

Russa Biswas, Jan Portisch, Heiko Paulheim, Harald Sack, Mehwish Alam
{"title":"Entity Type Prediction Leveraging Graph Walks and Entity Descriptions","authors":"Russa Biswas, Jan Portisch, Heiko Paulheim, Harald Sack, Mehwish Alam","doi":"10.48550/arXiv.2207.14094","DOIUrl":null,"url":null,"abstract":"The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation or human curation. Entity typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper presents \\textit{GRAND}, a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions. RDF2vec first generates graph walks and then uses a language model to obtain embeddings for each node in the graph. This study shows that the walk generation strategy and the embedding model have a significant effect on the performance of the entity typing task. The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes. The results show that the combination of order-aware RDF2vec variants together with the contextual embeddings of the textual entity descriptions achieve the best results.","PeriodicalId":342971,"journal":{"name":"International Workshop on the Semantic Web","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.14094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation or human curation. Entity typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper presents \textit{GRAND}, a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions. RDF2vec first generates graph walks and then uses a language model to obtain embeddings for each node in the graph. This study shows that the walk generation strategy and the embedding model have a significant effect on the performance of the entity typing task. The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes. The results show that the combination of order-aware RDF2vec variants together with the contextual embeddings of the textual entity descriptions achieve the best results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图行走和实体描述的实体类型预测
知识图谱(Knowledge Graphs, KGs)中的实体类型信息,如DBpedia、Freebase等,由于自动化生成或人工管理,往往是不完整的。实体类型是分配或推断KG中实体的语义类型的任务。本文提出了\textit{GRAND},这是一种利用RDF2vec中不同的图漫步策略以及文本实体描述的实体类型的新方法。RDF2vec首先生成图行走,然后使用语言模型获得图中每个节点的嵌入。研究表明,行走生成策略和嵌入模型对实体分类任务的性能有显著影响。对于细粒度和粗粒度类的kg中的实体类型,所提出的方法优于基准数据集DBpedia和FIGER上的基线方法。结果表明,将顺序感知RDF2vec变体与文本实体描述的上下文嵌入相结合可获得最佳效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Textual Entailment for Effective Triple Validation in Object Prediction Mapping and Cleaning Open Commonsense Knowledge Bases with Generative Translation H2 TNE: Temporal Heterogeneous Information Network Embedding in Hyperbolic Spaces RMLStreamer-SISO: An RDF Stream Generator from Streaming Heterogeneous Data HCL: Improving Graph Representation with Hierarchical Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1