A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction

S. Caorsi, M. Donelli, A. Massa, M. Pastorino, A. Randazzo, A. Rosani
{"title":"A microwave imaging method for NDE/NDT based on the SMW technique for the electromagnetic field prediction","authors":"S. Caorsi, M. Donelli, A. Massa, M. Pastorino, A. Randazzo, A. Rosani","doi":"10.1109/IMTC.2004.1351024","DOIUrl":null,"url":null,"abstract":"In the framework of microwave imaging techniques for NDE/NDT, this paper presents an innovative approach based on the use of the SMW inversion procedure for the electric field prediction. Starting from the integral form of inverse scattering equations, the problem of determining the presence of an unknown defect in a known host domain is recast into an optimization one by defining a suitable cost function and reducing the problem unknowns only to the flaw \"descriptors\". By considering the effective inversion technique based on the SMW formula, the estimation of the secondary unknowns (namely, the electric field distributions) is performed in a cost-effective way. Selected numerical results are finally presented in order to validate the approach showing current potentialities and limitations.","PeriodicalId":386903,"journal":{"name":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2004.1351024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the framework of microwave imaging techniques for NDE/NDT, this paper presents an innovative approach based on the use of the SMW inversion procedure for the electric field prediction. Starting from the integral form of inverse scattering equations, the problem of determining the presence of an unknown defect in a known host domain is recast into an optimization one by defining a suitable cost function and reducing the problem unknowns only to the flaw "descriptors". By considering the effective inversion technique based on the SMW formula, the estimation of the secondary unknowns (namely, the electric field distributions) is performed in a cost-effective way. Selected numerical results are finally presented in order to validate the approach showing current potentialities and limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电磁场预测 SMW 技术的无损检测/无损检测微波成像方法
在用于无损检测/无损探伤的微波成像技术框架内,本文提出了一种基于 SMW 反演程序的创新方法,用于电场预测。从反向散射方程的积分形式出发,通过定义一个合适的成本函数并将问题的未知数减少为缺陷 "描述符",将确定已知主域中是否存在未知缺陷的问题重塑为一个优化问题。通过考虑基于 SMW 公式的有效反演技术,以经济有效的方式对次要未知因素(即电场分布)进行了估算。最后介绍了部分数值结果,以验证该方法,显示其当前的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of the frequency estimation in the frequency domain A high sensitivity conditioning circuit for capacitive sensors including stray effects compensation and dummy sensors approach Active distortion cancelation of sinusoidal sources In vivo volt-amperometric characterization of electrochemical phenomena due to metallic restorations in the oral cavity Evaluation of patient's computer input ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1