Towards Emotion Cause Generation in Natural Language Processing using Deep Learning

M. Riyadh, M. O. Shafiq
{"title":"Towards Emotion Cause Generation in Natural Language Processing using Deep Learning","authors":"M. Riyadh, M. O. Shafiq","doi":"10.1109/ICMLA55696.2022.00027","DOIUrl":null,"url":null,"abstract":"Emotion Cause Analysis (ECA) has recently garnered substantial attention from the researcher community. In addition to devising various techniques to solve ECA related problems, researchers also introduced different variants of the ECA tasks such as Emotion Cause Extraction (ECE), Emotion Cause Pair Extraction (ECPE), Emotion Cause Span Extraction (ECSE). These are primarily classification tasks where the cause of the emotion and/or type of the emotion expressed in the text are identified. In this paper, we propose a new ECA related task named Emotion Cause Generation (ECG). This is a generative task that aims to generate meaningful cause for an emotion expressed in a given text. We demonstrate the viability of this newly proposed task with promising early observation.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion Cause Analysis (ECA) has recently garnered substantial attention from the researcher community. In addition to devising various techniques to solve ECA related problems, researchers also introduced different variants of the ECA tasks such as Emotion Cause Extraction (ECE), Emotion Cause Pair Extraction (ECPE), Emotion Cause Span Extraction (ECSE). These are primarily classification tasks where the cause of the emotion and/or type of the emotion expressed in the text are identified. In this paper, we propose a new ECA related task named Emotion Cause Generation (ECG). This is a generative task that aims to generate meaningful cause for an emotion expressed in a given text. We demonstrate the viability of this newly proposed task with promising early observation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的自然语言处理中的情感原因生成
情绪原因分析(ECA)最近引起了研究者界的广泛关注。除了设计各种技术来解决ECA相关问题外,研究者还引入了不同的ECA任务变体,如情感原因提取(ECE)、情感原因对提取(ECPE)、情感原因跨度提取(ECSE)。这些主要是分类任务,其中情感的原因和/或文本中表达的情感类型被识别出来。在本文中,我们提出了一个新的ECA相关任务——情绪原因生成(Emotion Cause Generation, ECG)。这是一项生成任务,旨在为给定文本中表达的情感生成有意义的原因。我们证明了这个新提出的任务的可行性与有希望的早期观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximate Orthogonal Spectral Autoencoders for Community Analysis in Social Networks DeepReject and DeepRoad: Road Condition Recognition and Classification Under Adversarial Conditions Improving Aquaculture Systems using AI: Employing predictive models for Biomass Estimation on Sonar Images ICDARTS: Improving the Stability of Cyclic DARTS Symbolic Semantic Memory in Transformer Language Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1