Performance and robustness trade-off in disturbance observer design

E. Sariyildiz, K. Ohnishi
{"title":"Performance and robustness trade-off in disturbance observer design","authors":"E. Sariyildiz, K. Ohnishi","doi":"10.1109/IECON.2013.6699721","DOIUrl":null,"url":null,"abstract":"In the conventional design of disturbance observer (DOB), a first order low pass filter (LPF) is used to prevent algebraic loop and satisfy causality in the inner-loop. Although a conventional DOB has a good robustness, its performance is limited by the dynamic characteristics of a first order LPF. A DOB that uses a higher order LPF is called as a higher order disturbance observer (HODOB) and can be used to improve performance of a system. However, improving performance may cause robustness problems. Therefore, there is a trade-off between robustness and performance of a DOB based robust control system, and it is directly related to order of the LPF of DOB. This paper analyzes robustness and performance of robust control systems based on DOB. The relation between performance and robustness is derived analytically, and a new design tool, which improves robustness and performance, is proposed for HODOB. A general second order plant model is analyzed, and simulation results are given to show the validity of the proposed method.","PeriodicalId":237327,"journal":{"name":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2013.6699721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In the conventional design of disturbance observer (DOB), a first order low pass filter (LPF) is used to prevent algebraic loop and satisfy causality in the inner-loop. Although a conventional DOB has a good robustness, its performance is limited by the dynamic characteristics of a first order LPF. A DOB that uses a higher order LPF is called as a higher order disturbance observer (HODOB) and can be used to improve performance of a system. However, improving performance may cause robustness problems. Therefore, there is a trade-off between robustness and performance of a DOB based robust control system, and it is directly related to order of the LPF of DOB. This paper analyzes robustness and performance of robust control systems based on DOB. The relation between performance and robustness is derived analytically, and a new design tool, which improves robustness and performance, is proposed for HODOB. A general second order plant model is analyzed, and simulation results are given to show the validity of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扰动观测器设计中的性能与鲁棒性权衡
在传统的干扰观测器设计中,采用一阶低通滤波器(LPF)来防止代数环路和满足内环的因果性。虽然传统的DOB具有良好的鲁棒性,但其性能受到一阶LPF动态特性的限制。使用高阶LPF的DOB称为高阶扰动观测器(HODOB),可用于改善系统的性能。然而,提高性能可能会导致健壮性问题。因此,基于DOB的鲁棒控制系统的鲁棒性与性能之间存在着一种权衡,它与DOB的LPF的阶数直接相关。本文分析了基于DOB的鲁棒控制系统的鲁棒性和性能。分析了性能与鲁棒性之间的关系,提出了一种新的设计工具,提高了HODOB的鲁棒性和性能。对一般的二阶植物模型进行了分析,并给出了仿真结果,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving 3D scan matching time of the coarse binary cubes method with fast spatial subsampling Fault-tolerant operation of an open-end winding five-phase PMSM drive with inverter faults Large scale micro-macro bilateral control using piezoelectric cantilever with plant nominalization A study on methods to design and select energy storage devices for Fuel Cell hybrid powered railway vehicles Development of a half-circle-shaped tubular permanent magnet machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1