A VLSI implementation of an adaptive genetic algorithm processor

M. Jayashree, C. Ranjith, S. Rani
{"title":"A VLSI implementation of an adaptive genetic algorithm processor","authors":"M. Jayashree, C. Ranjith, S. Rani","doi":"10.1109/ICSCN.2017.8085725","DOIUrl":null,"url":null,"abstract":"A genetic algorithm (GA) is a powerful heuristic method of selection based on natural living process. Because of larger size of the scheduling, implementing GA in software was tiresome and highly time complex. GA processor parallelizes the work in order to reduce the processing time and increases the speed, but still the efficiency of the GA is maintained through quality solutions. This work proposes a fast Adaptive Genetic Algorithm Processor (AGAP) for the implementation of Adaptive Noise Cancelation (ANC) filters in VLSI. The AGAP updates the coefficients of the ANC filter nullifying the effect of noise at the output end. The coefficients are optimized at every stage of the algorithm and are adaptively changed in order to meet the constraints of active noise canceller. AGAP processor is modeled using Verilog HDL in Xilinx ISE 14.6 platform. The functional performance of each module and the processor are simulated for their correctness to be synthesized using Spartan 6 XC6SLX45-3CSG324I FPGA.","PeriodicalId":383458,"journal":{"name":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2017.8085725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A genetic algorithm (GA) is a powerful heuristic method of selection based on natural living process. Because of larger size of the scheduling, implementing GA in software was tiresome and highly time complex. GA processor parallelizes the work in order to reduce the processing time and increases the speed, but still the efficiency of the GA is maintained through quality solutions. This work proposes a fast Adaptive Genetic Algorithm Processor (AGAP) for the implementation of Adaptive Noise Cancelation (ANC) filters in VLSI. The AGAP updates the coefficients of the ANC filter nullifying the effect of noise at the output end. The coefficients are optimized at every stage of the algorithm and are adaptively changed in order to meet the constraints of active noise canceller. AGAP processor is modeled using Verilog HDL in Xilinx ISE 14.6 platform. The functional performance of each module and the processor are simulated for their correctness to be synthesized using Spartan 6 XC6SLX45-3CSG324I FPGA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种自适应遗传算法处理器的VLSI实现
遗传算法是一种基于自然生命过程的强大的启发式选择方法。由于调度规模较大,在软件中实现遗传算法非常繁琐,且时间复杂度高。遗传算法处理器将工作并行化,以减少处理时间和提高速度,但仍然通过高质量的解来保持遗传算法的效率。本工作提出了一种快速自适应遗传算法处理器(AGAP),用于在VLSI中实现自适应噪声消除(ANC)滤波器。AGAP更新ANC滤波器的系数,消除输出端噪声的影响。在算法的每个阶段都对系数进行了优化,并自适应地改变,以满足主动降噪的约束。AGAP处理器在Xilinx ISE 14.6平台上使用Verilog HDL进行建模。利用Spartan 6 XC6SLX45-3CSG324I FPGA对各模块和处理器的功能性能进行了仿真,验证了其合成正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of programmable read only memory using reversible decoder on FPGA Literature survey on traffic-based server load balancing using SDN and open flow A survey on ARP cache poisoning and techniques for detection and mitigation Machine condition monitoring using audio signature analysis Robust audio watermarking for monitoring and information embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1