Estimating the time-varying periodicity of epileptiform discharges in the electroencephalogram

J. O’Toole, B. G. Zapirain, Iratxe Maestro Saiz, Alina Beatriz Anaya Chen, I. Y. Santamaria
{"title":"Estimating the time-varying periodicity of epileptiform discharges in the electroencephalogram","authors":"J. O’Toole, B. G. Zapirain, Iratxe Maestro Saiz, Alina Beatriz Anaya Chen, I. Y. Santamaria","doi":"10.1109/ISSPA.2012.6310480","DOIUrl":null,"url":null,"abstract":"Periodic lateralized epileptiform discharges (PLEDs) are EEG waveforms that can occur after brain injury or disease. The time-varying periodicity, or instantaneous frequency, of the PLEDs is a potentially important prognostic feature. Estimating the instantaneous frequency, however, is difficult because of the concurrent presence of background activity and artefacts. Here we present a method to enhance the instantaneous frequency features in the joint time-frequency domain. The procedure 1) enhances the PLED spikes in the time-domain using a simple energy operator; 2) transforms to the time-frequency domain using a separable-kernel distribution; and 3) uses a homomorphic filtering approach, within the time-frequency domain, to remove spectral modulation. Existing methods for instantaneous-frequency estimation are then applied to this enhanced time-frequency distribution. We show working examples with EEG epochs but have yet to test the method over an entire EEG database.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Periodic lateralized epileptiform discharges (PLEDs) are EEG waveforms that can occur after brain injury or disease. The time-varying periodicity, or instantaneous frequency, of the PLEDs is a potentially important prognostic feature. Estimating the instantaneous frequency, however, is difficult because of the concurrent presence of background activity and artefacts. Here we present a method to enhance the instantaneous frequency features in the joint time-frequency domain. The procedure 1) enhances the PLED spikes in the time-domain using a simple energy operator; 2) transforms to the time-frequency domain using a separable-kernel distribution; and 3) uses a homomorphic filtering approach, within the time-frequency domain, to remove spectral modulation. Existing methods for instantaneous-frequency estimation are then applied to this enhanced time-frequency distribution. We show working examples with EEG epochs but have yet to test the method over an entire EEG database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计脑电图中癫痫样放电的时变周期性
周期性偏侧癫痫样放电(PLEDs)是脑损伤或疾病后可能出现的脑电图波形。pled的时变周期性或瞬时频率是一个潜在的重要预测特征。然而,估计瞬时频率是困难的,因为同时存在背景活动和伪影。本文提出了一种增强联合时频域瞬时频率特征的方法。该方法(1)利用简单的能量算子在时域增强PLED尖峰;2)利用可分核分布变换到时频域;3)在时频域中使用同态滤波方法去除频谱调制。然后将现有的瞬时频率估计方法应用于这种增强的时频分布。我们展示了具有EEG时代的工作示例,但尚未在整个EEG数据库上测试该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online mvbf adaptation under diffuse noise environments with mimo based noise pre-filtering Hierarchical scheme for Arabic text recognition Precoder selection and rank adaptation in MIMO-OFDM Head detection using Kinect camera and its application to fall detection Wavelength and code division multiplexing toward diffuse optical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1