Semantic Segmentation using Modified U-Net for Autonomous Driving

T. Sugirtha, M. Sridevi
{"title":"Semantic Segmentation using Modified U-Net for Autonomous Driving","authors":"T. Sugirtha, M. Sridevi","doi":"10.1109/iemtronics55184.2022.9795710","DOIUrl":null,"url":null,"abstract":"Scene understanding of urban streets is a crucial component in perception task of autonomous driving application. Semantic segmentation has been extensively used in scene understanding which further provides assistance in subsequent autonomous driving tasks like object detection, path planning and motion control. But, accurate semantic segmentation is a challenging task in computer vision. U-Net is a popular semantic segmentation network used for segmentation task. In this paper, we improve the accuracy of U-Net model by replacing its encoder part with Convolution Neural Network (CNN) architecture. We compared the performance of VGG-16 and ResNet-50 CNNarchitectures. Extensive analysis was performed on Cityscapes dataset and the results demonstrated U-Net with VGG16 encoder shows better performance than ResNet50 encoder. The model is compared with semantic segmentation CNN architectures like Fully Convolutional Network (FCN) and SegNet with mean Intersection over Union (mIoU) improved by 2%.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Scene understanding of urban streets is a crucial component in perception task of autonomous driving application. Semantic segmentation has been extensively used in scene understanding which further provides assistance in subsequent autonomous driving tasks like object detection, path planning and motion control. But, accurate semantic segmentation is a challenging task in computer vision. U-Net is a popular semantic segmentation network used for segmentation task. In this paper, we improve the accuracy of U-Net model by replacing its encoder part with Convolution Neural Network (CNN) architecture. We compared the performance of VGG-16 and ResNet-50 CNNarchitectures. Extensive analysis was performed on Cityscapes dataset and the results demonstrated U-Net with VGG16 encoder shows better performance than ResNet50 encoder. The model is compared with semantic segmentation CNN architectures like Fully Convolutional Network (FCN) and SegNet with mean Intersection over Union (mIoU) improved by 2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进U-Net的自动驾驶语义分割
城市街道场景理解是自动驾驶应用感知任务的重要组成部分。语义分割在场景理解中得到了广泛的应用,进一步为后续的自动驾驶任务,如物体检测、路径规划和运动控制提供了帮助。但是,在计算机视觉中,准确的语义分割是一项具有挑战性的任务。U-Net是一种流行的语义分词网络,用于分词任务。本文采用卷积神经网络(CNN)结构代替U-Net模型的编码器部分,提高了U-Net模型的精度。我们比较了VGG-16和ResNet-50 cnn架构的性能。在cityscape数据集上进行了广泛的分析,结果表明使用VGG16编码器的U-Net比使用ResNet50编码器的U-Net具有更好的性能。该模型与全卷积网络(Fully Convolutional Network, FCN)和SegNet等语义分割CNN架构进行了比较,平均交联数(Intersection over Union, mIoU)提高了2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Reflecting Surfaces in UAV-Assisted 6G Networks: An Approach for Enhanced Propagation and Spectral Characteristics Bimetals (Au-Pd, Au-Pt) loaded WO3 hybridized graphene oxide FET sensors for selective detection of acetone Using UML to Describe the Development of Software Products Using an Object Approach A Machine Learning Approach for the Early Detection of Dementia VLSI Implementation of a Real-time Modified Decision-based Algorithm for Impulse Noise Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1