Improving Self-Adaptation by Combining MAPE-K, Machine and Deep Learning

Sabah Lecheheb, Soufiane Boulehouache, Said Brahimi
{"title":"Improving Self-Adaptation by Combining MAPE-K, Machine and Deep Learning","authors":"Sabah Lecheheb, Soufiane Boulehouache, Said Brahimi","doi":"10.1109/NTIC55069.2022.10100459","DOIUrl":null,"url":null,"abstract":"Monitoring, Analyzing, Planning, and Execution share knowledge and build a favorable approach in the form of a loop (MAPE-K). However, this proposed reference model is not efficient for large self-adaptations. Moreover, the failure of the analyzer component to keep up with the current expansion of data is one of the reasons that making the MAPE-K loop consumes a lot of time and resources. We suggest a hybrid learning dataflow design for the analysis phase that combines Machine and Deep Learning techniques to enhance the accuracy of the Analyzer component in less time.","PeriodicalId":403927,"journal":{"name":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTIC55069.2022.10100459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring, Analyzing, Planning, and Execution share knowledge and build a favorable approach in the form of a loop (MAPE-K). However, this proposed reference model is not efficient for large self-adaptations. Moreover, the failure of the analyzer component to keep up with the current expansion of data is one of the reasons that making the MAPE-K loop consumes a lot of time and resources. We suggest a hybrid learning dataflow design for the analysis phase that combines Machine and Deep Learning techniques to enhance the accuracy of the Analyzer component in less time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合MAPE-K、机器和深度学习提高自适应能力
监测、分析、计划和执行共享知识,并以循环(MAPE-K)的形式建立一个有利的方法。然而,该参考模型对于大规模自适应并不有效。此外,分析器组件无法跟上当前数据扩展的速度是制作MAPE-K循环消耗大量时间和资源的原因之一。我们建议在分析阶段采用混合学习数据流设计,结合机器和深度学习技术,以在更短的时间内提高分析器组件的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NTIC 2022 Cover Page Solving Multiconstrained Quality of service Multicast Routing Problem using Simulated Annealing Algorithm Evolution of passive user interests by analyzing Social Network activities Semantic segmentation of remote sensing images using U-net and its variants : Conference New Technologies of Information and Communication (NTIC 2022) Skyline Computation Based on Previously Computed Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1