Single-image Super-resolution via De-biased Sparse Representation

Jian Pu, Yingbin Zheng, Hao Ye
{"title":"Single-image Super-resolution via De-biased Sparse Representation","authors":"Jian Pu, Yingbin Zheng, Hao Ye","doi":"10.1109/IPTA.2018.8608141","DOIUrl":null,"url":null,"abstract":"Sparse representation and dictionary learning of image patches are well-known methods for single-image super-resolution. However, due to the regularization term of sparse-inducing penalties, the solution is usually biased. In this study, we present a de-biasing framework by adding a de-biasing step after sparse representation. Two de-biasing methods with sign consistency and feature consistency are further proposed under this framework. Using a unified proximal gradient method, we can solve the proposed de-biasing methods efficiently. Experiments on real super-resolution datasets validate the effectiveness and robustness of the proposed de-biasing methods.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sparse representation and dictionary learning of image patches are well-known methods for single-image super-resolution. However, due to the regularization term of sparse-inducing penalties, the solution is usually biased. In this study, we present a de-biasing framework by adding a de-biasing step after sparse representation. Two de-biasing methods with sign consistency and feature consistency are further proposed under this framework. Using a unified proximal gradient method, we can solve the proposed de-biasing methods efficiently. Experiments on real super-resolution datasets validate the effectiveness and robustness of the proposed de-biasing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于去偏稀疏表示的单幅图像超分辨率
图像块的稀疏表示和字典学习是单幅图像超分辨率的常用方法。然而,由于稀疏诱导惩罚的正则化项,解决方案通常是有偏差的。在这项研究中,我们提出了一个去偏框架,通过在稀疏表示后增加一个去偏步骤。在此框架下,进一步提出了符号一致性和特征一致性两种去偏方法。采用统一的近端梯度法,可以有效地解决上述去偏方法。在真实超分辨率数据集上的实验验证了所提去偏方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Drowsiness Detection in Facial Images InNet: Learning to Detect Shadows with Injection Network Image Classification Method in DR Image Based on Transfer Learning Video Tracking of Insect Flight Path: Towards Behavioral Assessment Image Registration Algorithm Based on Super pixel Segmentation and SURF Feature Points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1