{"title":"Single-image Super-resolution via De-biased Sparse Representation","authors":"Jian Pu, Yingbin Zheng, Hao Ye","doi":"10.1109/IPTA.2018.8608141","DOIUrl":null,"url":null,"abstract":"Sparse representation and dictionary learning of image patches are well-known methods for single-image super-resolution. However, due to the regularization term of sparse-inducing penalties, the solution is usually biased. In this study, we present a de-biasing framework by adding a de-biasing step after sparse representation. Two de-biasing methods with sign consistency and feature consistency are further proposed under this framework. Using a unified proximal gradient method, we can solve the proposed de-biasing methods efficiently. Experiments on real super-resolution datasets validate the effectiveness and robustness of the proposed de-biasing methods.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sparse representation and dictionary learning of image patches are well-known methods for single-image super-resolution. However, due to the regularization term of sparse-inducing penalties, the solution is usually biased. In this study, we present a de-biasing framework by adding a de-biasing step after sparse representation. Two de-biasing methods with sign consistency and feature consistency are further proposed under this framework. Using a unified proximal gradient method, we can solve the proposed de-biasing methods efficiently. Experiments on real super-resolution datasets validate the effectiveness and robustness of the proposed de-biasing methods.