A Multi-Objective Adaptive Upper Threshold Approach for Overloaded Host Detection in Cloud Computing

Rajeshwari Sissodia, M. Rauthan, V. Barthwal
{"title":"A Multi-Objective Adaptive Upper Threshold Approach for Overloaded Host Detection in Cloud Computing","authors":"Rajeshwari Sissodia, M. Rauthan, V. Barthwal","doi":"10.4018/ijcac.311038","DOIUrl":null,"url":null,"abstract":"Cloud data centers (CDC) have become an increasingly critical issue because of their large-scale deployment, which has resulted in increased energy consumption (EC) and SLA. The SLA and EC can be greatly reduced by using an efficient virtual machine consolidation (VMC) approach. This study presents a multi-objective adaptive upper threshold (UTh) technique for identifying overloaded hosts. The dynamic virtual machine consolidation (DVMC) is then obtained by combining a modified overloaded host detection technique with a different VM selection method (i.e., minimum migration time (Mmt) and minimum utilization (Mu)). The simulation results indicate that the modified Interquartile range (Iqr) overloaded host detection algorithm outperforms the existing overloaded host detection algorithms (i.e., InterQuartile range (Iqr), local regression (Lr), and dynamic voltage frequency scale (DVFS) algorithms) in terms of EC, SLA, and the number of virtual machine (VM) migrations.","PeriodicalId":442336,"journal":{"name":"Int. J. Cloud Appl. Comput.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Cloud Appl. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcac.311038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud data centers (CDC) have become an increasingly critical issue because of their large-scale deployment, which has resulted in increased energy consumption (EC) and SLA. The SLA and EC can be greatly reduced by using an efficient virtual machine consolidation (VMC) approach. This study presents a multi-objective adaptive upper threshold (UTh) technique for identifying overloaded hosts. The dynamic virtual machine consolidation (DVMC) is then obtained by combining a modified overloaded host detection technique with a different VM selection method (i.e., minimum migration time (Mmt) and minimum utilization (Mu)). The simulation results indicate that the modified Interquartile range (Iqr) overloaded host detection algorithm outperforms the existing overloaded host detection algorithms (i.e., InterQuartile range (Iqr), local regression (Lr), and dynamic voltage frequency scale (DVFS) algorithms) in terms of EC, SLA, and the number of virtual machine (VM) migrations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云计算中多目标自适应上阈值检测方法
云数据中心(CDC)已经成为一个日益重要的问题,因为它们的大规模部署导致了能源消耗(EC)和SLA的增加。通过使用高效的虚拟机整合(VMC)方法,可以大大减少SLA和EC。提出了一种多目标自适应上阈值(UTh)识别过载主机的方法。然后,通过将改进的过载主机检测技术与不同的虚拟机选择方法(即最小迁移时间(Mmt)和最小利用率(Mu))相结合,获得动态虚拟机整合(DVMC)。仿真结果表明,改进的四分位范围(Iqr)过载主机检测算法在EC、SLA和虚拟机迁移数量方面优于现有的四分位范围(Iqr)、局部回归(Lr)和动态电压频率尺度(DVFS)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mitigating Risks in the Cloud-Based Metaverse Access Control Strategies and Techniques Using Supervised Learning to Detect Command and Control Attacks in IoT System Level Benchmarking of Public Clouds A Secure Framework to Prevent Three-Tier Cloud Architecture From Malicious Malware Injection Attacks Sociocultural Factors in Times of Global Crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1