Using the length of the speech to measure the opinion

L. Lancieri, E. Leprêtre
{"title":"Using the length of the speech to measure the opinion","authors":"L. Lancieri, E. Leprêtre","doi":"10.1145/2492517.2492647","DOIUrl":null,"url":null,"abstract":"This article describes an automated technique that allows to differentiate texts expressing a positive or a negative opinion. The basic principle is based on the observation that positive texts are statistically shorter than negative ones. From this observation of the psycholinguistic human behavior, we derive a heuristic that is employed to generate connoted lexicons with a low level of prior knowledge. The lexicon is then used to compute the level of opinion of an unknown text. Our primary goal is to reduce the need of the human implication (domain and language) in the generation of the lexicon in order to have a process with the highest possible autonomy. The resulting adaptability would represent an advantage with free or approximate expression commonly found in social networks environment.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article describes an automated technique that allows to differentiate texts expressing a positive or a negative opinion. The basic principle is based on the observation that positive texts are statistically shorter than negative ones. From this observation of the psycholinguistic human behavior, we derive a heuristic that is employed to generate connoted lexicons with a low level of prior knowledge. The lexicon is then used to compute the level of opinion of an unknown text. Our primary goal is to reduce the need of the human implication (domain and language) in the generation of the lexicon in order to have a process with the highest possible autonomy. The resulting adaptability would represent an advantage with free or approximate expression commonly found in social networks environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用演讲的长度来衡量观点
本文介绍了一种自动化技术,可以区分表达积极或消极观点的文本。其基本原理是基于积极文本在统计上比消极文本短的观察。从对人类心理语言学行为的观察中,我们得出了一种启发式方法,该方法用于产生具有低水平先验知识的隐含词汇。然后使用词典来计算未知文本的意见水平。我们的主要目标是在词典生成过程中减少对人类含义(领域和语言)的需求,从而实现一个具有最高自主权的过程。由此产生的适应性将代表一种在社交网络环境中常见的自由或近似表达的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis and implications of SNS search in under-developed countries Identifying unreliable sources of skill and competency information Assessing group cohesion in homophily networks Exploiting online social data in ontology learning for event tracking and emergency response Event identification for social streams using keyword-based evolving graph sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1