{"title":"An introduction to deep learning","authors":"Francis Quintal Lauzon","doi":"10.1109/ISSPA.2012.6310529","DOIUrl":null,"url":null,"abstract":"Deep learning allows automatically learning multiple levels of representations of the underlying distribution of the data to be modeled. In this work, a specific implementation called stacked denoising autoencoders is explored. We contribute by demonstrating that this kind of representation coupled to a SVM improves classification error on MNIST over the usual deep learning approach where a logistic regression layer is added to the stack of denoising autoencoders.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"25 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Deep learning allows automatically learning multiple levels of representations of the underlying distribution of the data to be modeled. In this work, a specific implementation called stacked denoising autoencoders is explored. We contribute by demonstrating that this kind of representation coupled to a SVM improves classification error on MNIST over the usual deep learning approach where a logistic regression layer is added to the stack of denoising autoencoders.