Metallic Coatings for Brazing Aluminum Alloys

A. Suslov
{"title":"Metallic Coatings for Brazing Aluminum Alloys","authors":"A. Suslov","doi":"10.1201/9781351045636-140000447","DOIUrl":null,"url":null,"abstract":"Because of their high specific strength and satisfactory corrosion resistance, aluminum alloys belong to the group of fundamental structural materials in modern engineering. Their wide use has been made possible as a result of developing advanced methods of processing and producing permanent joints by welding or brazing. However, the application of brazing aluminum alloys is limited because of the problems in removing the strong and chemically resistant oxide film. These problems can be overcome by using metallic coatings which themselves do not oxidize during heating in vacuum and, when deposited, the oxide film is broken up and can be removed from the surface of the parent material. The most promising method is to use metallic coatings in the form of individual components of the brazing alloy which forms in contact melting of the deposited coatings with aluminum in heating for brazing. This brazing method is referred to as contact-reactive brazing and is used widely for brazing aluminum alloys. This article provides an overview of the contact-reactive brazing process.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because of their high specific strength and satisfactory corrosion resistance, aluminum alloys belong to the group of fundamental structural materials in modern engineering. Their wide use has been made possible as a result of developing advanced methods of processing and producing permanent joints by welding or brazing. However, the application of brazing aluminum alloys is limited because of the problems in removing the strong and chemically resistant oxide film. These problems can be overcome by using metallic coatings which themselves do not oxidize during heating in vacuum and, when deposited, the oxide film is broken up and can be removed from the surface of the parent material. The most promising method is to use metallic coatings in the form of individual components of the brazing alloy which forms in contact melting of the deposited coatings with aluminum in heating for brazing. This brazing method is referred to as contact-reactive brazing and is used widely for brazing aluminum alloys. This article provides an overview of the contact-reactive brazing process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钎焊铝合金用金属涂层
铝合金由于具有较高的比强度和良好的耐腐蚀性能,属于现代工程中基础结构材料的范畴。由于发展了先进的加工和生产焊接或钎焊永久接头的方法,它们的广泛应用成为可能。然而,由于难以去除强而耐化学腐蚀的氧化膜,钎焊铝合金的应用受到了限制。这些问题可以通过使用金属涂层来克服,金属涂层本身在真空加热时不会氧化,并且在沉积时,氧化膜被破坏并可以从母材表面去除。最有希望的方法是在钎焊加热过程中,将沉积的金属涂层与铝接触熔化,以钎焊合金的单个组分形式形成金属涂层。这种钎焊方法被称为接触反应钎焊,广泛用于钎焊铝合金。本文概述了接触反应钎焊工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welding Parameters for Aluminum Alloys Computer Vision for Fault Detection in Aluminum Castings Quality Parameters for High-Pressure Diecastings 6XXX Alloys: Chemical Composition and Heat Treatment Quench Factor Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1