UNITOR @ Sardistance2020: Combining Transformer-based Architectures and Transfer Learning for Robust Stance Detection

Simone Giorgioni, Marcello Politi, Samir Salman, R. Basili, D. Croce
{"title":"UNITOR @ Sardistance2020: Combining Transformer-based Architectures and Transfer Learning for Robust Stance Detection","authors":"Simone Giorgioni, Marcello Politi, Samir Salman, R. Basili, D. Croce","doi":"10.4000/BOOKS.AACCADEMIA.7092","DOIUrl":null,"url":null,"abstract":"English. This paper describes the UNITOR system that participated to the Stance Detection in Italian tweets (Sardistance) task within the context of EVALITA 2020. UNITOR implements a transformer-based architecture whose accuracy is improved by adopting a Transfer Learning technique. In particular, this work investigates the possible contribution of three auxiliary tasks related to Stance Detection, i.e., Sentiment Detection, Hate Speech Detection and Irony Detection. Moreover, UNITOR relies on an additional dataset automatically downloaded and labeled through distant supervision. The UNITOR system ranked first in Task A within the competition. This confirms the effectiveness of Transformer-based architectures and the beneficial impact of the adopted strategies. Italiano. Questo lavoro descrive UNITOR, uno dei sistemi partecipanti allo Stance Detection in Italian tweet (SardiStance) task. UNITOR implementa un’architettura neurale basata su Transformer, la cui accuratezza viene migliorata applicando un metodo di Transfer Learning, che sfrutta le informazioni di tre task ausiliari, ovvero Sentiment Detection, Hate Speech Detection e Irony Detection. Inoltre, l’addestramento di UNITOR puó contare su un insieme di dati scaricati ed etichettati automaticamente applicando un semplice metodo di Distant Supervision. Il sistema si é classificato al primo posto nella competizione, confermando l’efficacia delle architetture basate su Transformer e il contributo delle strategie","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

English. This paper describes the UNITOR system that participated to the Stance Detection in Italian tweets (Sardistance) task within the context of EVALITA 2020. UNITOR implements a transformer-based architecture whose accuracy is improved by adopting a Transfer Learning technique. In particular, this work investigates the possible contribution of three auxiliary tasks related to Stance Detection, i.e., Sentiment Detection, Hate Speech Detection and Irony Detection. Moreover, UNITOR relies on an additional dataset automatically downloaded and labeled through distant supervision. The UNITOR system ranked first in Task A within the competition. This confirms the effectiveness of Transformer-based architectures and the beneficial impact of the adopted strategies. Italiano. Questo lavoro descrive UNITOR, uno dei sistemi partecipanti allo Stance Detection in Italian tweet (SardiStance) task. UNITOR implementa un’architettura neurale basata su Transformer, la cui accuratezza viene migliorata applicando un metodo di Transfer Learning, che sfrutta le informazioni di tre task ausiliari, ovvero Sentiment Detection, Hate Speech Detection e Irony Detection. Inoltre, l’addestramento di UNITOR puó contare su un insieme di dati scaricati ed etichettati automaticamente applicando un semplice metodo di Distant Supervision. Il sistema si é classificato al primo posto nella competizione, confermando l’efficacia delle architetture basate su Transformer e il contributo delle strategie
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UNITOR @ Sardistance2020:结合基于变压器的架构和迁移学习进行稳健的姿态检测
英语。本文描述了在EVALITA 2020背景下参与意大利语推文姿态检测(Sardistance)任务的UNITOR系统。UNITOR实现了一个基于变压器的体系结构,通过采用迁移学习技术提高了其准确性。特别地,这项工作研究了与姿态检测相关的三个辅助任务的可能贡献,即情感检测,仇恨言论检测和讽刺检测。此外,UNITOR依赖于通过远程监督自动下载和标记的额外数据集。UNITOR系统在竞赛中获得Task A第一名。这证实了基于transformer的架构的有效性以及所采用策略的有益影响。意大利语。描述UNITOR, undei系统参与了允许姿态检测的意大利语推特(SardiStance)任务。UNITOR实现了基于Transformer的神经网络架构,基于迁移学习(Transfer Learning)的迁移学习(Transfer Learning),基于迁移学习(Transfer Learning)的迁移学习(Transfer Learning),基于迁移学习(Transfer Learning)的迁移学习(Transfer Learning),基于迁移学习(transvero Sentiment Detection)的迁移学习(transvero Sentiment Detection),仇恨语音检测(Hate Speech Detection)和反语检测(Irony Detection)。因此,对UNITOR puó的管理包含了对远程监控的管理数据、自动化应用程序的管理数据和远程监控的管理方法。我的系统是一个经典的、最具竞争力的、最具效率的、以变压器为基础的、最具竞争力的系统,这将有助于我们的战略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1