Bayesian Invariant Risk Minimization

Yong Lin, Hanze Dong, Hao Wang, Tong Zhang
{"title":"Bayesian Invariant Risk Minimization","authors":"Yong Lin, Hanze Dong, Hao Wang, Tong Zhang","doi":"10.1109/CVPR52688.2022.01555","DOIUrl":null,"url":null,"abstract":"Generalization under distributional shift is an open challenge for machine learning. Invariant Risk Minimization (IRM) is a promising framework to tackle this issue by extracting invariant features. However, despite the potential and popularity of IRM, recent works have reported negative results of it on deep models. We argue that the failure can be primarily attributed to deep models' tendency to overfit the data. Specifically, our theoretical analysis shows that IRM degenerates to empirical risk minimization (ERM) when overfitting occurs. Our empirical evidence also provides supports: IRM methods that work well in typical settings significantly deteriorate even if we slightly enlarge the model size or lessen the training data. To alleviate this issue, we propose Bayesian Invariant Risk Min-imization (BIRM) by introducing Bayesian inference into the IRM. The key motivation is to estimate the penalty of IRM based on the posterior distribution of classifiers (as opposed to a single classifier), which is much less prone to overfitting. Extensive experimental results on four datasets demonstrate that BIRM consistently outperforms the existing IRM baselines significantly.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Generalization under distributional shift is an open challenge for machine learning. Invariant Risk Minimization (IRM) is a promising framework to tackle this issue by extracting invariant features. However, despite the potential and popularity of IRM, recent works have reported negative results of it on deep models. We argue that the failure can be primarily attributed to deep models' tendency to overfit the data. Specifically, our theoretical analysis shows that IRM degenerates to empirical risk minimization (ERM) when overfitting occurs. Our empirical evidence also provides supports: IRM methods that work well in typical settings significantly deteriorate even if we slightly enlarge the model size or lessen the training data. To alleviate this issue, we propose Bayesian Invariant Risk Min-imization (BIRM) by introducing Bayesian inference into the IRM. The key motivation is to estimate the penalty of IRM based on the posterior distribution of classifiers (as opposed to a single classifier), which is much less prone to overfitting. Extensive experimental results on four datasets demonstrate that BIRM consistently outperforms the existing IRM baselines significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯不变风险最小化
分布移位下的泛化是机器学习面临的一个公开挑战。不变风险最小化(IRM)是一种很有前途的框架,通过提取不变特征来解决这一问题。然而,尽管IRM的潜力和普及,最近的研究报告了它在深度模型上的负面结果。我们认为,失败的主要原因是深度模型倾向于过度拟合数据。具体而言,我们的理论分析表明,当发生过拟合时,IRM退化为经验风险最小化(ERM)。我们的经验证据也提供了支持:即使我们稍微扩大模型大小或减少训练数据,在典型设置中工作良好的IRM方法也会显着恶化。为了解决这一问题,我们将贝叶斯推理引入到贝叶斯不变风险最小化(BIRM)中。关键动机是基于分类器的后验分布(而不是单一分类器)来估计IRM的惩罚,这更不容易出现过拟合。在4个数据集上的大量实验结果表明,BIRM持续优于现有的IRM基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1