REAL: REquest Arbitration in Last Level Caches

Sakshi Tiwari, Shreshth Tuli, Isaar Ahmad, Ayushi Agarwal, P. Panda, S. Subramoney
{"title":"REAL: REquest Arbitration in Last Level Caches","authors":"Sakshi Tiwari, Shreshth Tuli, Isaar Ahmad, Ayushi Agarwal, P. Panda, S. Subramoney","doi":"10.1145/3362100","DOIUrl":null,"url":null,"abstract":"Shared last level caches (LLC) of multicore systems-on-chip are subject to a significant amount of contention over a limited bandwidth, resulting in major performance bottlenecks that make the issue a first-order concern in modern multiprocessor systems-on-chip. Even though shared cache space partitioning has been extensively studied in the past, the problem of cache bandwidth partitioning has not received sufficient attention. We demonstrate the occurrence of such contention and the resulting impact on the overall system performance. To address the issue, we perform detailed simulations to study the impact of different parameters and propose a novel cache bandwidth partitioning technique, called REAL, that arbitrates among cache access requests originating from different processor cores. It monitors the LLC access patterns to dynamically assign a priority value to each core. Experimental results on different mixes of benchmarks show up to 2.13× overall system speedup over baseline policies, with minimal impact on energy.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3362100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Shared last level caches (LLC) of multicore systems-on-chip are subject to a significant amount of contention over a limited bandwidth, resulting in major performance bottlenecks that make the issue a first-order concern in modern multiprocessor systems-on-chip. Even though shared cache space partitioning has been extensively studied in the past, the problem of cache bandwidth partitioning has not received sufficient attention. We demonstrate the occurrence of such contention and the resulting impact on the overall system performance. To address the issue, we perform detailed simulations to study the impact of different parameters and propose a novel cache bandwidth partitioning technique, called REAL, that arbitrates among cache access requests originating from different processor cores. It monitors the LLC access patterns to dynamically assign a priority value to each core. Experimental results on different mixes of benchmarks show up to 2.13× overall system speedup over baseline policies, with minimal impact on energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在最后一层缓存请求仲裁
多核片上系统的共享最后一级缓存(LLC)会在有限的带宽上产生大量争用,从而导致主要的性能瓶颈,使该问题成为现代多处理器片上系统的首要问题。尽管过去对共享缓存空间分区进行了广泛的研究,但缓存带宽分区问题并没有得到足够的重视。我们将演示这种争用的发生以及由此对整个系统性能产生的影响。为了解决这个问题,我们进行了详细的模拟来研究不同参数的影响,并提出了一种新的缓存带宽分区技术,称为REAL,它可以在来自不同处理器内核的缓存访问请求之间进行仲裁。它监视LLC访问模式,以便动态地为每个核心分配优先级值。在不同基准测试组合上的实验结果显示,与基线策略相比,系统整体加速高达2.13倍,对能源的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Acceleration for Embedded Keyword Spotting: Tutorial and Survey Adaptive Computation Reuse for Energy-Efficient Training of Deep Neural Networks Horizontal Auto-Scaling for Multi-Access Edge Computing Using Safe Reinforcement Learning IoT-Fog-Cloud Centric Earthquake Monitoring and Prediction Horizontal Side-Channel Vulnerabilities of Post-Quantum Key Exchange and Encapsulation Protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1