Segment-based hand pose estimation

Christopher G. Schwarz, N. Lobo
{"title":"Segment-based hand pose estimation","authors":"Christopher G. Schwarz, N. Lobo","doi":"10.1109/CRV.2005.72","DOIUrl":null,"url":null,"abstract":"The work presented here solves two major problems of hand pose recognition: (A) determining what pose is shown in a given, input picture and (B) detecting the presence of a known input pose in a given input video. It builds on the earlier work of Athitsos and Sclaroff (2003) toward solving problem A. Because that method relies upon lines found in the input data and requires computer-generated database models, it is unsuitable for the later, video problem. Our reworking of this framework uses different, region-based information to allow video frames to be used as the \"database\" in which to look for the test pose. It returns database images of hands in the same configuration as a query image by using a series of steps based on the number and direction of visible finger protrusions, Chamfer distance, orientation histograms, and a competitive, comparison-based matching of each visible finger segment. Detailed result data demonstrates the system's feasibility and potential.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The work presented here solves two major problems of hand pose recognition: (A) determining what pose is shown in a given, input picture and (B) detecting the presence of a known input pose in a given input video. It builds on the earlier work of Athitsos and Sclaroff (2003) toward solving problem A. Because that method relies upon lines found in the input data and requires computer-generated database models, it is unsuitable for the later, video problem. Our reworking of this framework uses different, region-based information to allow video frames to be used as the "database" in which to look for the test pose. It returns database images of hands in the same configuration as a query image by using a series of steps based on the number and direction of visible finger protrusions, Chamfer distance, orientation histograms, and a competitive, comparison-based matching of each visible finger segment. Detailed result data demonstrates the system's feasibility and potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于片段的手部姿态估计
这里提出的工作解决了手部姿势识别的两个主要问题:(A)确定给定输入图片中显示的姿势;(B)检测给定输入视频中已知输入姿势的存在。它建立在Athitsos和Sclaroff(2003)解决问题a的早期工作的基础上。因为该方法依赖于在输入数据中找到的行,并且需要计算机生成数据库模型,所以它不适合后来的视频问题。我们对这个框架的重新设计使用了不同的,基于区域的信息,允许视频帧被用作“数据库”,在其中寻找测试姿势。通过使用一系列基于可见手指突起的数量和方向、倒角距离、方向直方图以及每个可见手指段的竞争性、基于比较的匹配的步骤,它以与查询图像相同的配置返回数据库中的手图像。详细的实验数据验证了系统的可行性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1