Quark: an efficient XQuery full-text implementation

A. Bhaskar, C. Botev, M. Chettiar, Lin Guo, J. Shanmugasundaram, F. Shao, Fan Yang
{"title":"Quark: an efficient XQuery full-text implementation","authors":"A. Bhaskar, C. Botev, M. Chettiar, Lin Guo, J. Shanmugasundaram, F. Shao, Fan Yang","doi":"10.1145/1142473.1142588","DOIUrl":null,"url":null,"abstract":"The XQuery 1.0 and XPath 2.0 Full-text (XQFT) language has been developed by the W3C to extend XQuery and XPath with full-text search capabilities. XQFT allows users to specify a mix of structured and complex full-text predicates, and also allows users to score/rank such queries. The power and flexibility of XQFT gives rise to two interesting questions. First, is it possible to efficiently integrate a full-function XML query language with sophisticated full-text search? Second, is it possible to score and rank arbitrary XQuery and XQFT queries? In this demonstration, we present evidence that it is indeed possible to achieve the above goals. We demonstrate the Quark open-source data management system and show how we can seamlessly and efficiently integrate structured and unstructured search over XML data. In particular, we demonstrate (a) techniques for efficiently evaluating keyword search over virtual XML views, and (b) a framework for scoring both structured and full-text predicates.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The XQuery 1.0 and XPath 2.0 Full-text (XQFT) language has been developed by the W3C to extend XQuery and XPath with full-text search capabilities. XQFT allows users to specify a mix of structured and complex full-text predicates, and also allows users to score/rank such queries. The power and flexibility of XQFT gives rise to two interesting questions. First, is it possible to efficiently integrate a full-function XML query language with sophisticated full-text search? Second, is it possible to score and rank arbitrary XQuery and XQFT queries? In this demonstration, we present evidence that it is indeed possible to achieve the above goals. We demonstrate the Quark open-source data management system and show how we can seamlessly and efficiently integrate structured and unstructured search over XML data. In particular, we demonstrate (a) techniques for efficiently evaluating keyword search over virtual XML views, and (b) a framework for scoring both structured and full-text predicates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quark:一个高效的XQuery全文实现
W3C开发了XQuery 1.0和XPath 2.0全文(XQFT)语言,以扩展XQuery和XPath的全文搜索功能。XQFT允许用户指定结构化和复杂的全文谓词组合,还允许用户对这些查询进行评分/排序。XQFT的强大功能和灵活性引发了两个有趣的问题。首先,是否有可能有效地将全功能XML查询语言与复杂的全文搜索集成在一起?第二,是否有可能对任意XQuery和XQFT查询进行评分和排名?在这个演示中,我们提供的证据表明,确实有可能实现上述目标。我们将演示Quark开源数据管理系统,并展示如何在XML数据上无缝、高效地集成结构化和非结构化搜索。特别是,我们演示了(a)在虚拟XML视图上有效评估关键字搜索的技术,以及(b)对结构化谓词和全文谓词进行评分的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data management projects at Google Record linkage: similarity measures and algorithms Query evaluation using overlapping views: completeness and efficiency DADA: a data cube for dominant relationship analysis MAXENT: consistent cardinality estimation in action
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1