Study on precoding optimization algorithms in massive MIMO system with multi-antenna users

E. Bobrov, D. Kropotov, S. Troshin, D. Zaev
{"title":"Study on precoding optimization algorithms in massive MIMO system with multi-antenna users","authors":"E. Bobrov, D. Kropotov, S. Troshin, D. Zaev","doi":"10.1080/10556788.2022.2091564","DOIUrl":null,"url":null,"abstract":"The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an un- constrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in ca- pacity. We are testing the proposed approach in several scenarios generated using Quadriga — open-source software for generating realistic radio channel impulse re- sponse. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. The proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2091564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an un- constrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in ca- pacity. We are testing the proposed approach in several scenarios generated using Quadriga — open-source software for generating realistic radio channel impulse re- sponse. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. The proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多天线用户大规模MIMO系统预编码优化算法研究
本文将多用户预编码问题作为无线多输入多输出(MIMO)系统的非凸优化问题进行研究。在我们的工作中,我们用一个新的计算更简单的函数近似目标谱效率函数。然后,我们利用一种特殊的微分投影法将预编码问题简化为无约束优化问题,并利用拟牛顿L-BFGS迭代法求解该问题,以获得容量增益。我们正在使用Quadriga(开源软件,用于生成真实的无线电信道脉冲响应)在几个场景中测试所提出的方法。与启发式方法相比,该方法具有单调性改进,计算时间合理。所提出的L-BFGS优化方案在该领域是新颖的,与标准方法相比具有显著的优势。该方法实现简单,可为该领域的其他启发式算法提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximizing the number of rides served for time-limited Dial-a-Ride* A family of limited memory three term conjugate gradient methods A semismooth conjugate gradients method – theoretical analysis A mixed-integer programming formulation for optimizing the double row layout problem Robust reverse 1-center problems on trees with interval costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1