LSTM and Ensemble Based Approach for Predicting the Success of Movies Using Metadata and Social Media

W.M.D.R. Ruwantha, Kuhaneswaran Banujan, Kumara Btgs
{"title":"LSTM and Ensemble Based Approach for Predicting the Success of Movies Using Metadata and Social Media","authors":"W.M.D.R. Ruwantha, Kuhaneswaran Banujan, Kumara Btgs","doi":"10.1109/3ICT53449.2021.9581601","DOIUrl":null,"url":null,"abstract":"Twitter, for example, offers a wealth of information on people's choices. Because of social media's growing acceptability and popularity, extracting information from data produced on social media has emerged as a prominent study issue. These massive amounts of data are used to build models that anticipate behavior and trends. On Twitter, people express their opinions regarding movies. In this study, a Long Short-Term Memory (LSTM) and ensemble based approach was proposed predicting the success of movies using metadata and social media. In this research, both social media data and movie metadata were consumed to predict the success of the movies. The metadata of the movie also plays an important role, which can be utilized to predict the success of the movies. IMDb ratings, the genre of the movies, and details about the awards that the movies won or nominated are some of the metadata used in addition to the tweets. LSTM, a neural network (NN) model, was applied to identify the sentiment value of the Twitter posts. Then, the ensemble approach was employed to predict the success of movies using movie metadata and results from the LSTM based NN model. This combined model was able to obtain 81.2% accuracy and outperformed the other implemented models.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twitter, for example, offers a wealth of information on people's choices. Because of social media's growing acceptability and popularity, extracting information from data produced on social media has emerged as a prominent study issue. These massive amounts of data are used to build models that anticipate behavior and trends. On Twitter, people express their opinions regarding movies. In this study, a Long Short-Term Memory (LSTM) and ensemble based approach was proposed predicting the success of movies using metadata and social media. In this research, both social media data and movie metadata were consumed to predict the success of the movies. The metadata of the movie also plays an important role, which can be utilized to predict the success of the movies. IMDb ratings, the genre of the movies, and details about the awards that the movies won or nominated are some of the metadata used in addition to the tweets. LSTM, a neural network (NN) model, was applied to identify the sentiment value of the Twitter posts. Then, the ensemble approach was employed to predict the success of movies using movie metadata and results from the LSTM based NN model. This combined model was able to obtain 81.2% accuracy and outperformed the other implemented models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM和集成的元数据和社交媒体电影成功预测方法
例如,Twitter提供了大量关于人们选择的信息。由于社交媒体的可接受性和受欢迎程度越来越高,从社交媒体上产生的数据中提取信息已成为一个突出的研究问题。这些海量的数据被用来建立预测行为和趋势的模型。在推特上,人们表达自己对电影的看法。本研究提出了一种基于长短期记忆(LSTM)和集成的方法,利用元数据和社交媒体预测电影的成功。在这项研究中,社交媒体数据和电影元数据都被用来预测电影的成功。电影的元数据也起着重要的作用,可以用来预测电影的成功。除了tweet之外,还使用了一些元数据,包括IMDb评分、电影类型以及电影获得或提名的奖项的详细信息。应用神经网络模型LSTM来识别推特帖子的情感值。然后,采用集成方法利用电影元数据和基于LSTM的神经网络模型的结果来预测电影的成功。该组合模型的准确率达到81.2%,优于其他已实现的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing SCADA Systems against Cyber-Attacks using Artificial Intelligence Quality of Life Integrated Framework: Perspective of Cloud Computing Usage Reference Points Generated on Unit Hypersurfaces for MaOEAs Eye-Tracking Analysis with Deep Learning Method An Implementation and Evaluation of Basic Data Storage Topic for Content Provider Stage in Android Programming Learning Assistance System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1