Uncovering Surprising Event Boundaries in Narratives

Zhiling Wang, A. Jafarpour, Maarten Sap
{"title":"Uncovering Surprising Event Boundaries in Narratives","authors":"Zhiling Wang, A. Jafarpour, Maarten Sap","doi":"10.18653/v1/2022.wnu-1.1","DOIUrl":null,"url":null,"abstract":"It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.","PeriodicalId":398853,"journal":{"name":"Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wnu-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is important to define meaningful and interpretable automatic evaluation metrics for open-domain dialog research. Standard language generation metrics have been shown to be ineffective for dialog. This paper introduces the FED metric (fine-grained evaluation of dialog), an automatic evaluation metric which uses DialoGPT, without any fine-tuning or supervision. It also introduces the FED dataset which is constructed by annotating a set of human-system and human-human conversations with eighteen fine-grained dialog qualities. The FED metric (1) does not rely on a ground-truth response, (2) does not require training data and (3) measures fine-grained dialog qualities at both the turn and whole dialog levels. FED attains moderate to strong correlation with human judgement at both levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示叙事中令人惊讶的事件边界
在开放域对话研究中,定义有意义且可解释的自动评价指标是非常重要的。标准语言生成度量已被证明对对话是无效的。本文介绍了FED度量(细粒度的对话评估),这是一种使用DialoGPT的自动评估度量,不需要任何微调和监督。它还介绍了FED数据集,该数据集通过注释一组具有18个细粒度对话质量的人-系统和人-人对话来构建。FED度量(1)不依赖于真实的响应,(2)不需要训练数据,(3)在回合和整个对话级别测量细粒度的对话质量。FED与人的判断在这两个层面上都达到了中度到高度的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPT-2-based Human-in-the-loop Theatre Play Script Generation Narrative Detection and Feature Analysis in Online Health Communities Compositional Generalization for Kinship Prediction through Data Augmentation Looking from the Inside: How Children Render Character’s Perspectives in Freely Told Fantasy Stories How to be Helpful on Online Support Forums?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1