Lexicon Based and Multi-Criteria Decision Making (MCDM) Approach for Detecting Emotions from Arabic Microblog Text

Ahmad M. Abd Al-Aziz, M. Gheith, A. Eldin
{"title":"Lexicon Based and Multi-Criteria Decision Making (MCDM) Approach for Detecting Emotions from Arabic Microblog Text","authors":"Ahmad M. Abd Al-Aziz, M. Gheith, A. Eldin","doi":"10.1109/ACLING.2015.21","DOIUrl":null,"url":null,"abstract":"Emotions serve as a communicative function both within the brain and within the social group. Most of previous opinion mining studies applied on Arabic microblog text to identify positive, negative or neutral polarity. This paper studies the problem of detecting multiple emotion classes in Arabic microblog text (e.g. Twitter). Incoming Arabic microblog text is classified into one of fine grained emotional classes {happiness, sadness, fear, anger, disgust or none} if exists or mixed emotion if text contains multiple emotions e.g. {Happiness/Fear} or {Anger/Disgust}. We applied a combined approach of lexicon approach and Multi-Criteria Decision Making approach. We use a conditioned plot to classify and analyze the text by generating a two dimensional graphic analysis space, one dimension represents observations (tweets) and the other represents our variables (5 emotional scores). The experimental results show that our proposed approach by using the conditioned plot able to classify text into different fine grained emotions, and also able to classify Arabic text with mixed emotions.","PeriodicalId":404268,"journal":{"name":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACLING.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Emotions serve as a communicative function both within the brain and within the social group. Most of previous opinion mining studies applied on Arabic microblog text to identify positive, negative or neutral polarity. This paper studies the problem of detecting multiple emotion classes in Arabic microblog text (e.g. Twitter). Incoming Arabic microblog text is classified into one of fine grained emotional classes {happiness, sadness, fear, anger, disgust or none} if exists or mixed emotion if text contains multiple emotions e.g. {Happiness/Fear} or {Anger/Disgust}. We applied a combined approach of lexicon approach and Multi-Criteria Decision Making approach. We use a conditioned plot to classify and analyze the text by generating a two dimensional graphic analysis space, one dimension represents observations (tweets) and the other represents our variables (5 emotional scores). The experimental results show that our proposed approach by using the conditioned plot able to classify text into different fine grained emotions, and also able to classify Arabic text with mixed emotions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于词汇的多准则决策(MCDM)阿拉伯语微博文本情感检测方法
情绪在大脑和社会群体中都是一种交流功能。以往的意见挖掘研究大多是对阿拉伯语微博文本进行正面、负面或中性极性的识别。本文研究了阿拉伯语微博文本(如Twitter)中多情感类的检测问题。传入的阿拉伯语微博文本如果存在,则分为细粒度情绪类{快乐、悲伤、恐惧、愤怒、厌恶或无情绪};如果文本包含多种情绪,例如{快乐/恐惧}或{愤怒/厌恶},则分为混合情绪。我们采用了词典法和多标准决策法相结合的方法。我们使用条件图通过生成二维图形分析空间来对文本进行分类和分析,一维表示观察(tweet),另一维表示我们的变量(5个情感得分)。实验结果表明,我们提出的基于条件图的方法能够将文本分类为不同细粒度的情感,也能够对混合情感的阿拉伯文本进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Which Configuration Works Best? An Experimental Study on Supervised Arabic Twitter Sentiment Analysis Increasing the Accuracy of Opinion Mining in Arabic Tunisian Arabic aeb Wordnet: Current State and Future Extensions A Named Entities Recognition System for Modern Standard Arabic using Rule-Based Approach Transducers Cascades for an Automatic Recognition of Arabic Named Entities in Order to Establish Links to Free Resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1