Vehicle Dispatching and Scheduling Algorithms for Battery Electric Heavy-Duty Truck Fleets Considering En-route Opportunity Charging

Zhouqiao Zhao, Guoyuan Wu, K. Boriboonsomsin, A. Kailas
{"title":"Vehicle Dispatching and Scheduling Algorithms for Battery Electric Heavy-Duty Truck Fleets Considering En-route Opportunity Charging","authors":"Zhouqiao Zhao, Guoyuan Wu, K. Boriboonsomsin, A. Kailas","doi":"10.1109/SusTech51236.2021.9467476","DOIUrl":null,"url":null,"abstract":"There has been growing interest in the electrification of medium- and heavy-duty vehicles (M-HDVs) in real-world, regional distribution applications. Fleet dispatch optimization of battery-electric trucks (BETs) is critical given the limited onboard energy, charging characteristics, and operational considerations. Our paper proposes a bi-level hierarchical method to optimize BET dispatch during pickup and delivery runs. With any route/scheduling change, the average speed, travel time, and energy consumption from one location to another will change accordingly because of the weight of the goods and the real-time traffic condition. So, the \"electric vehicle routing problem\" was extended to include pickup and delivery, time windows, and partial recharge. The proposed algorithm significantly reduces the operation cost of the BET fleet considering labor, energy consumption, and time window penalties without compromising computational efficiency.","PeriodicalId":127126,"journal":{"name":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SusTech51236.2021.9467476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There has been growing interest in the electrification of medium- and heavy-duty vehicles (M-HDVs) in real-world, regional distribution applications. Fleet dispatch optimization of battery-electric trucks (BETs) is critical given the limited onboard energy, charging characteristics, and operational considerations. Our paper proposes a bi-level hierarchical method to optimize BET dispatch during pickup and delivery runs. With any route/scheduling change, the average speed, travel time, and energy consumption from one location to another will change accordingly because of the weight of the goods and the real-time traffic condition. So, the "electric vehicle routing problem" was extended to include pickup and delivery, time windows, and partial recharge. The proposed algorithm significantly reduces the operation cost of the BET fleet considering labor, energy consumption, and time window penalties without compromising computational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑途中机会充电的纯电动重卡车队车辆调度算法
在现实世界的区域分销应用中,人们对中型和重型车辆(m- hdv)的电气化越来越感兴趣。考虑到有限的车载能量、充电特性和操作考虑,电池电动卡车(BETs)的车队调度优化至关重要。本文提出了一种双层分层方法来优化取货和交付过程中的BET调度。随着路线/调度的变化,由于货物的重量和实时交通状况,从一个地点到另一个地点的平均速度、旅行时间和能耗都会发生相应的变化。因此,将“电动汽车路线问题”扩展到包括取货、送货、时间窗口和部分充电。该算法在不影响计算效率的情况下,显著降低了BET车队在人工、能耗和时间窗惩罚方面的运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome Message from the Conference Chair Molten Salt Based Nanofluids for Solar Thermal Power Plant: A Case Study Sparking Energy Mindset at Home with the Create a Spark Energy House Challenge High-Endurance UAV Via Parasitic Weight Minimization and Wireless Energy Harvesting AI Legitimacy for Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1