Causally-Aware Intraoperative Imputation for Overall Survival Time Prediction

Xiang Li, Xuelin Qian, Litian Liang, Lingjie Kong, Qiaole Dong, Jiejun Chen, Dingxia Liu, Xiuzhong Yao, Yanwei Fu
{"title":"Causally-Aware Intraoperative Imputation for Overall Survival Time Prediction","authors":"Xiang Li, Xuelin Qian, Litian Liang, Lingjie Kong, Qiaole Dong, Jiejun Chen, Dingxia Liu, Xiuzhong Yao, Yanwei Fu","doi":"10.1109/CVPR52729.2023.01505","DOIUrl":null,"url":null,"abstract":"Previous efforts in vision community are mostly made on learning good representations from visual patterns. Beyond this, this paper emphasizes the high-level ability of causal reasoning. We thus present a case study of solving the challenging task of Overall Survival (OS) time in primary liver cancers. Critically, the prediction of OS time at the early stage remains challenging, due to the unobvious image patterns of reflecting the OS. To this end, we propose a causal inference system by leveraging the intraoperative attributes and the correlation among them, as an intermediate supervision to bridge the gap between the images and the final OS. Particularly, we build a causal graph, and train the images to estimate the intraoperative attributes for final as prediction. We present a novel Causally-aware Intraoperative Imputation Model (CAWIM) that can sequentially predict each attribute using its parent nodes in the estimated causal graph. To determine the causal directions, we propose a splitting-voting mechanism, which votes for the direction for each pair of adjacent nodes among multiple predictions obtained via causal discovery from heterogeneity. The practicability and effectiveness of our method are demonstrated by the promising results on liver cancer dataset of 361 patients with long-term observations.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous efforts in vision community are mostly made on learning good representations from visual patterns. Beyond this, this paper emphasizes the high-level ability of causal reasoning. We thus present a case study of solving the challenging task of Overall Survival (OS) time in primary liver cancers. Critically, the prediction of OS time at the early stage remains challenging, due to the unobvious image patterns of reflecting the OS. To this end, we propose a causal inference system by leveraging the intraoperative attributes and the correlation among them, as an intermediate supervision to bridge the gap between the images and the final OS. Particularly, we build a causal graph, and train the images to estimate the intraoperative attributes for final as prediction. We present a novel Causally-aware Intraoperative Imputation Model (CAWIM) that can sequentially predict each attribute using its parent nodes in the estimated causal graph. To determine the causal directions, we propose a splitting-voting mechanism, which votes for the direction for each pair of adjacent nodes among multiple predictions obtained via causal discovery from heterogeneity. The practicability and effectiveness of our method are demonstrated by the promising results on liver cancer dataset of 361 patients with long-term observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
术中因果感知的总生存时间预测
视觉学界以往的研究主要集中在从视觉模式中学习好的表征上。除此之外,本文还强调了高层次的因果推理能力。因此,我们提出了一个解决原发性肝癌总生存期(OS)时间这一挑战性任务的案例研究。关键的是,由于反映操作系统的图像模式不明显,在早期阶段预测操作系统时间仍然具有挑战性。为此,我们提出了一个利用术中属性和它们之间的相关性的因果推理系统,作为中间监督,弥合图像和最终操作系统之间的差距。特别地,我们建立了一个因果图,并训练图像来估计术中属性,从而进行最终的预测。我们提出了一种新的因果感知术中植入模型(CAWIM),该模型可以使用估计因果图中的父节点顺序预测每个属性。为了确定因果方向,我们提出了一种分裂投票机制,该机制在通过异质性因果发现获得的多个预测中为每对相邻节点的方向投票。通过对361例肝癌患者的长期观察,我们的方法的实用性和有效性得到了很好的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1