Probabilistic provisioning and scheduling in uncertain Cloud environments

M. L. D. Vedova, D. Tessera, M. Calzarossa
{"title":"Probabilistic provisioning and scheduling in uncertain Cloud environments","authors":"M. L. D. Vedova, D. Tessera, M. Calzarossa","doi":"10.1109/ISCC.2016.7543834","DOIUrl":null,"url":null,"abstract":"Resource provisioning and task scheduling in Cloud environments are quite challenging because of the fluctuating workload patterns and of the unpredictable behaviors and unstable performance of the infrastructure. It is therefore important to properly master the uncertainties associated with Cloud workloads and infrastructure. In this paper, we propose a probabilistic approach for resource provisioning and task scheduling that allows users to estimate in advance, i.e., offline, the resources to be provisioned, thus reducing the risk and the impact of overprovisioning or underprovisioning. In particular, we formulate an optimization problem whose objective is to identify scheduling plans that minimize the overall monetary cost for leasing Cloud resources subject to some workload constraints. This cost-aware model ensures that the execution time of an application does not exceed with a given probability a specified deadline, even in presence of uncertainties. To evaluate the behavior and sensitivity to uncertainties of the proposed approach, we simulate a simple batch workload consisting of MapReduce jobs. The experimental results show that, despite the provisioning and scheduling approaches that do not take into account the uncertainties in their decision process, our probabilistic approach nicely adapts to workload and Cloud uncertainties.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Resource provisioning and task scheduling in Cloud environments are quite challenging because of the fluctuating workload patterns and of the unpredictable behaviors and unstable performance of the infrastructure. It is therefore important to properly master the uncertainties associated with Cloud workloads and infrastructure. In this paper, we propose a probabilistic approach for resource provisioning and task scheduling that allows users to estimate in advance, i.e., offline, the resources to be provisioned, thus reducing the risk and the impact of overprovisioning or underprovisioning. In particular, we formulate an optimization problem whose objective is to identify scheduling plans that minimize the overall monetary cost for leasing Cloud resources subject to some workload constraints. This cost-aware model ensures that the execution time of an application does not exceed with a given probability a specified deadline, even in presence of uncertainties. To evaluate the behavior and sensitivity to uncertainties of the proposed approach, we simulate a simple batch workload consisting of MapReduce jobs. The experimental results show that, despite the provisioning and scheduling approaches that do not take into account the uncertainties in their decision process, our probabilistic approach nicely adapts to workload and Cloud uncertainties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定云环境中的概率供应和调度
云环境中的资源配置和任务调度非常具有挑战性,因为工作负载模式的波动以及基础设施不可预测的行为和不稳定的性能。因此,正确掌握与云工作负载和基础设施相关的不确定性非常重要。在本文中,我们提出了一种用于资源供应和任务调度的概率方法,该方法允许用户提前(即离线)估计要供应的资源,从而降低了过度供应或不足供应的风险和影响。特别是,我们制定了一个优化问题,其目标是确定调度计划,使租赁云资源的总体货币成本在某些工作负载约束下最小化。这种成本感知模型确保应用程序的执行时间不会以给定的概率超过指定的截止日期,即使存在不确定性。为了评估所提出方法的行为和对不确定性的敏感性,我们模拟了一个由MapReduce作业组成的简单批处理工作负载。实验结果表明,尽管供应和调度方法在决策过程中没有考虑到不确定性,但我们的概率方法能够很好地适应工作负载和云计算的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint power control and sub-channel allocation for co-channel OFDMA femtocells Measuring the users and conversations of a vibrant online emotional support system An efficient KP-ABE scheme for content protection in Information-Centric Networking Energy-efficient MAC schemes for Delay-Tolerant Sensor Networks FRT-Skip Graph: A Skip Graph-style structured overlay based on Flexible Routing Tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1