Comparison of the Holomorphic Embedding Load Flow Method with Established Power Flow Algorithms and a New Hybrid Approach

Patrick S. Sauter, C. Braun, Mathias Kluwe, S. Hohmann
{"title":"Comparison of the Holomorphic Embedding Load Flow Method with Established Power Flow Algorithms and a New Hybrid Approach","authors":"Patrick S. Sauter, C. Braun, Mathias Kluwe, S. Hohmann","doi":"10.1109/GREENTECH.2017.36","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a comparison of the well-established power-flow algorithms Gauss-Seidel, Newton-Raphson, Dishonest Newton-Raphson, Decoupled Load Flow, Fast Decoupled Load Flow, DC Power-Flow and the new Holomorphic Embedding Load Flow Method (HELM). The algorithms are assessed using 21 PQ-powerflow test cases with numbers of nodes ranging from 2 to 3120. The focus of the analysis is on the precision of the solutions of the algorithms and the required computation time. The comparison shows some disadvantages of HELM and motivates a new Adaptive Hybrid Approach that combines the Holomorphic Embedding Load Flow Method and iterative algorithms to merge the benefits of both techniques. The Adaptive Hybrid Approach is able to calculate precise solutions for every test case without starting values and is on average faster than the Newton-Raphson method while being more flexible than every other algorithm considered here. It is also shown that the Adaptive Hybrid Approach yields the correct solution like HELM if it exists.","PeriodicalId":104496,"journal":{"name":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2017.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents the results of a comparison of the well-established power-flow algorithms Gauss-Seidel, Newton-Raphson, Dishonest Newton-Raphson, Decoupled Load Flow, Fast Decoupled Load Flow, DC Power-Flow and the new Holomorphic Embedding Load Flow Method (HELM). The algorithms are assessed using 21 PQ-powerflow test cases with numbers of nodes ranging from 2 to 3120. The focus of the analysis is on the precision of the solutions of the algorithms and the required computation time. The comparison shows some disadvantages of HELM and motivates a new Adaptive Hybrid Approach that combines the Holomorphic Embedding Load Flow Method and iterative algorithms to merge the benefits of both techniques. The Adaptive Hybrid Approach is able to calculate precise solutions for every test case without starting values and is on average faster than the Newton-Raphson method while being more flexible than every other algorithm considered here. It is also shown that the Adaptive Hybrid Approach yields the correct solution like HELM if it exists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全纯嵌入潮流法与已有潮流算法及一种新的混合潮流法的比较
本文比较了高斯-塞德尔、牛顿-拉弗森、非诚实牛顿-拉弗森、解耦潮流、快速解耦潮流、直流潮流和新的全纯嵌入潮流法(HELM)等常用潮流算法。采用21个节点数为2 ~ 3120的pq -功率流测试用例对算法进行了评估。分析的重点是算法解的精度和所需的计算时间。对比表明了HELM的一些缺点,并激发了一种新的自适应混合方法,该方法将全纯嵌入潮流法和迭代算法相结合,以融合两种技术的优点。自适应混合方法能够在没有起始值的情况下为每个测试用例计算精确的解决方案,平均速度比牛顿-拉夫森方法快,同时比这里考虑的其他算法更灵活。结果表明,自适应混合方法在存在的情况下可以得到与HELM一样的正确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grey-Box Modeling for Photo-Voltaic Power Systems Using Dynamic Neural-Networks Model Predictive Control Analysis for the Battery Energy Storage System Transformer Aging due to High Penetrations of PV, EV Charging, and Energy Storage Applications The Prediction of Electrical Vehicles' Growth Rate and Management of Electrical Energy Demand in Turkey Grid-Price Dependent Optimal Energy Storage Management Strategy for Grid-Connected Industrial Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1