Addressing Inter-Patient Variability in EEG: Diversity-Enhanced Data Augmentation and Few-Shot Learning-based Epilepsy Detection

Raghdah Saem Aldahr, Munid Alanazi, Mohammad Ilyas
{"title":"Addressing Inter-Patient Variability in EEG: Diversity-Enhanced Data Augmentation and Few-Shot Learning-based Epilepsy Detection","authors":"Raghdah Saem Aldahr, Munid Alanazi, Mohammad Ilyas","doi":"10.1109/ICHE55634.2022.10179887","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) signals are a key source in epileptic seizure recognition. The patient-specific data scantiness in EEG signals, referring to the inter-patient variability of EEG, hinders the accurate recognition of epileptic seizure patterns. This work presents a multi-class epileptic seizure detection scheme with a two-step solution for addressing the data scantiness and inter-patient variability constraint. The proposed Diversity-enhanced data Augmentation and graph theory-assisted FEw-shot Learning for Multi-class seizure detection (DAFEM) approach incorporates diversified data augmentation, graph theory-based feature extraction, and few-shot learning-based multi-class classification. Initially, the data augmentation utilized a Generative Adversarial Network (GAN) with diversified EEG sample generation to conquer EEG data scarcity. Subsequently, it extracts the potential set of features from the augmented data using the graph theory method based on the analysis of inherent dynamic characteristics of EEG data. In particular, to recognize the marginal and the drastic temporal fluctuations in EEG data patterns, it performs the Temporal Weight Fluctuation (TWF) in addition to the feature extraction scores. The data scarcity in the epileptic seizure classes is handled by adopting the few-shot learning strategy. By modeling the Siamese neural network for the multi-class classification of epilepsy, it discriminates the normal, preictal, and ictal patient samples over the constraint of inter-patient variability of EEG data. Finally, the proposed work is tested with two authoritative EEG datasets. The experimental outcomes illustrate that the proposed DAFEM yields 2.73% and 4.5% higher recall on Bonn and CHB-MIT datasets, respectively.","PeriodicalId":289905,"journal":{"name":"2022 International Conference on Healthcare Engineering (ICHE)","volume":"41 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Healthcare Engineering (ICHE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHE55634.2022.10179887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalogram (EEG) signals are a key source in epileptic seizure recognition. The patient-specific data scantiness in EEG signals, referring to the inter-patient variability of EEG, hinders the accurate recognition of epileptic seizure patterns. This work presents a multi-class epileptic seizure detection scheme with a two-step solution for addressing the data scantiness and inter-patient variability constraint. The proposed Diversity-enhanced data Augmentation and graph theory-assisted FEw-shot Learning for Multi-class seizure detection (DAFEM) approach incorporates diversified data augmentation, graph theory-based feature extraction, and few-shot learning-based multi-class classification. Initially, the data augmentation utilized a Generative Adversarial Network (GAN) with diversified EEG sample generation to conquer EEG data scarcity. Subsequently, it extracts the potential set of features from the augmented data using the graph theory method based on the analysis of inherent dynamic characteristics of EEG data. In particular, to recognize the marginal and the drastic temporal fluctuations in EEG data patterns, it performs the Temporal Weight Fluctuation (TWF) in addition to the feature extraction scores. The data scarcity in the epileptic seizure classes is handled by adopting the few-shot learning strategy. By modeling the Siamese neural network for the multi-class classification of epilepsy, it discriminates the normal, preictal, and ictal patient samples over the constraint of inter-patient variability of EEG data. Finally, the proposed work is tested with two authoritative EEG datasets. The experimental outcomes illustrate that the proposed DAFEM yields 2.73% and 4.5% higher recall on Bonn and CHB-MIT datasets, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决脑电图的患者间变异性:多样性增强数据增强和基于少量学习的癫痫检测
脑电图(EEG)信号是癫痫发作识别的重要来源。脑电图信号中患者特异性数据的稀缺性,即脑电图在患者间的可变性,阻碍了对癫痫发作模式的准确识别。这项工作提出了一个多类癫痫发作检测方案,采用两步解决方案来解决数据不足和患者间可变性约束。本文提出的多样性增强数据增强和图论辅助的多类癫痫检测(DAFEM)方法结合了多样化数据增强、基于图论的特征提取和基于少镜头学习的多类分类。首先,利用生成对抗网络(GAN)和多样化的脑电样本生成来克服脑电数据的稀缺性。随后,在分析脑电数据固有动态特征的基础上,利用图论方法从增强数据中提取潜在特征集。特别地,为了识别脑电数据模式的边缘和剧烈的时间波动,该算法在特征提取分数的基础上进行了时间加权波动(TWF)。采用少镜头学习策略来处理癫痫发作课的数据稀缺性。通过对Siamese神经网络进行多类癫痫分类建模,在脑电图数据的患者间可变性约束下,区分正常、发作期和发作期患者样本。最后,用两个权威的脑电数据集对所提出的工作进行了测试。实验结果表明,该方法在Bonn和CHB-MIT数据集上的召回率分别提高了2.73%和4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fertility Assessment Model For Embryo Grading Using Convolutional Neural Network (CNN) Beneficial Effect of Amniotic Membrane Stem Cell and Vitamin C after Fractional Carbon-Dioxide Laser for Photoaging Treatment in Asian Skin A Review on Human Stress Detection using Biosignal Based on Image Processing Technique Analytics of the COVID-19 Death According to the Vaccine Dose: Malaysia Case Study Depression Risk Model Among Malaysians
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1