A new method for epileptic seizure classification in EEG using adapted wavelet packets

Amirmasoud Ahmadi, V. Shalchyan, M. Daliri
{"title":"A new method for epileptic seizure classification in EEG using adapted wavelet packets","authors":"Amirmasoud Ahmadi, V. Shalchyan, M. Daliri","doi":"10.1109/EBBT.2017.7956756","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG), as the most common tool for epileptic seizure classification, contains useful information about different physiological states of the brain. Seizure related features in EEG signals can be better identified when localized in time-frequency basis projections. In this work, a novel method for epileptic seizure classification based on wavelet packets (WPs) is presented in which both mother wavelet function and WP bases are adapted a posteriori to improve the seizure classification. A support vector machine (SVM) as classifier is used for seizure versus non-seizure EEG segment classification. In order to evaluate the proposed algorithm, a publicly available dataset containing different groups' patient with epilepsy and healthy individuals are used. The obtained results indicate that the proposed method outperforms some previously proposed algorithms in epileptic seizure classification.","PeriodicalId":293165,"journal":{"name":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBBT.2017.7956756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Electroencephalography (EEG), as the most common tool for epileptic seizure classification, contains useful information about different physiological states of the brain. Seizure related features in EEG signals can be better identified when localized in time-frequency basis projections. In this work, a novel method for epileptic seizure classification based on wavelet packets (WPs) is presented in which both mother wavelet function and WP bases are adapted a posteriori to improve the seizure classification. A support vector machine (SVM) as classifier is used for seizure versus non-seizure EEG segment classification. In order to evaluate the proposed algorithm, a publicly available dataset containing different groups' patient with epilepsy and healthy individuals are used. The obtained results indicate that the proposed method outperforms some previously proposed algorithms in epileptic seizure classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应小波包的脑电图癫痫发作分类新方法
脑电图(EEG)作为癫痫发作分类最常用的工具,包含了关于大脑不同生理状态的有用信息。将脑电图信号中的癫痫相关特征定位于时频基投影,可以更好地识别癫痫相关特征。本文提出了一种基于小波包的癫痫发作分类新方法,该方法对母小波函数和小波包基进行后验调整以改进癫痫发作分类。将支持向量机(SVM)作为分类器用于癫痫与非癫痫脑电信号的分类。为了评估所提出的算法,使用了包含不同组癫痫患者和健康个体的公开可用数据集。结果表明,该方法在癫痫发作分类方面优于以往提出的一些算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of injured kidney in computed tomography Predictive cruise control Effects of aerobic capacity, age and gender on brain neural matter Electromagnetic radiation interaction and pollution measurements Characterization of a bend sensor for neuroprosthetic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1