Remaining Charging-Discharging Cycle Prediction of Lithium-ion Batteries Based on Cumulative Indicator

Jui-Pin Wang, Jinfeng Zheng, Qiao Wang, Yafei Li, Xiaohui Zhang, Xianbo Wang
{"title":"Remaining Charging-Discharging Cycle Prediction of Lithium-ion Batteries Based on Cumulative Indicator","authors":"Jui-Pin Wang, Jinfeng Zheng, Qiao Wang, Yafei Li, Xiaohui Zhang, Xianbo Wang","doi":"10.1109/CEEPE58418.2023.10165961","DOIUrl":null,"url":null,"abstract":"The remaining charging-discharging cycle (RCDC) prediction is of great significance for lithium-ion battery (LIB) replacement and recycling. This paper proposes to construct a cumulative degradation indicator (CDI) to replace the original DI. The proposed CDI is better than the original DI in terms of monotonicity, linearity, and trend. In the stage of determining the end-of-life (EoL) threshold on the CDI curve, a relevance vector machine (RVM) is introduced to screen a small amount of available samples, and to reduce the prediction error of the CDI EoL threshold. In the experimental verification stage, this paper uses LIB full-life data from NASA to verify the early and long-term prediction performance of RCDC using a small sample. The experimental results show that when the proportion of training data approaches 50%, the prediction error gradually converges to the actual value.","PeriodicalId":431552,"journal":{"name":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE58418.2023.10165961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The remaining charging-discharging cycle (RCDC) prediction is of great significance for lithium-ion battery (LIB) replacement and recycling. This paper proposes to construct a cumulative degradation indicator (CDI) to replace the original DI. The proposed CDI is better than the original DI in terms of monotonicity, linearity, and trend. In the stage of determining the end-of-life (EoL) threshold on the CDI curve, a relevance vector machine (RVM) is introduced to screen a small amount of available samples, and to reduce the prediction error of the CDI EoL threshold. In the experimental verification stage, this paper uses LIB full-life data from NASA to verify the early and long-term prediction performance of RCDC using a small sample. The experimental results show that when the proportion of training data approaches 50%, the prediction error gradually converges to the actual value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于累积指标的锂离子电池剩余充放电周期预测
剩余充放电周期(RCDC)预测对于锂离子电池(LIB)的更换和回收具有重要意义。本文提出构建一个累积退化指标(CDI)来代替原有的累积退化指标。该方法在单调性、线性度和趋势性方面都优于原方法。在确定CDI曲线的EoL阈值阶段,引入相关向量机(RVM)筛选少量可用样本,降低CDI EoL阈值的预测误差。在实验验证阶段,本文利用NASA的LIB全寿命数据,小样本验证RCDC的早期和长期预测性能。实验结果表明,当训练数据的比例接近50%时,预测误差逐渐收敛到实际值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Detection Method of Infrared Image for Circulating Pump Motor in Valve Cooling System Based on Improved YOLOv3 High Renewable Penetration Development Planning under System Inertia Constraints A Robust OPF Model with Consideration of Reactive Power and Voltage Magnitude A Numerical Study on Rime Ice Accretion Characteristics for Wind Turbine Blades Research on Optimal Allocation Method of Energy Storage Devices for Coordinated Wind and Solar Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1