RStore: A Direct-Access DRAM-based Data Store

A. Trivedi, Patrick Stuedi, B. Metzler, Clemens Lutz, M. Schmatz, T. Gross
{"title":"RStore: A Direct-Access DRAM-based Data Store","authors":"A. Trivedi, Patrick Stuedi, B. Metzler, Clemens Lutz, M. Schmatz, T. Gross","doi":"10.1109/ICDCS.2015.74","DOIUrl":null,"url":null,"abstract":"Distributed DRAM stores have become an attractive option for providing fast data accesses to analytics applications. To accelerate the performance of these stores, researchers have proposed using RDMA technology. RDMA offers high bandwidth and low latency data access by carefully separating resource setup from IO operations, and making IO operations fast by using rich network semantics and offloading. Despite recent interest, leveraging the full potential of RDMA in a distributed environment remains a challenging task. In this paper, we present RDMA Store or RStore, a DRAM-based data store that delivers high performance by extending RDMA's separation philosophy to a distributed setting. RStore achieves high aggregate bandwidth (705 Gb/s) and close-to-hardware latency on our 12-machine testbed. We developed a distributed graph processing framework and a Key-Value sorter using RStore's unique memory-like API. The graph processing framework, which relies on RStore for low-latency graph access, outperforms state-of-the-art systems by margins of 2.6 -- 4.2× when calculating Page Rank. The Key-Value sorter can sort 256 GB of data in 31.7 sec, which is 8× better than Hadoop TeraSort in a similar setting.","PeriodicalId":129182,"journal":{"name":"2015 IEEE 35th International Conference on Distributed Computing Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 35th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2015.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Distributed DRAM stores have become an attractive option for providing fast data accesses to analytics applications. To accelerate the performance of these stores, researchers have proposed using RDMA technology. RDMA offers high bandwidth and low latency data access by carefully separating resource setup from IO operations, and making IO operations fast by using rich network semantics and offloading. Despite recent interest, leveraging the full potential of RDMA in a distributed environment remains a challenging task. In this paper, we present RDMA Store or RStore, a DRAM-based data store that delivers high performance by extending RDMA's separation philosophy to a distributed setting. RStore achieves high aggregate bandwidth (705 Gb/s) and close-to-hardware latency on our 12-machine testbed. We developed a distributed graph processing framework and a Key-Value sorter using RStore's unique memory-like API. The graph processing framework, which relies on RStore for low-latency graph access, outperforms state-of-the-art systems by margins of 2.6 -- 4.2× when calculating Page Rank. The Key-Value sorter can sort 256 GB of data in 31.7 sec, which is 8× better than Hadoop TeraSort in a similar setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RStore:直接访问的基于dram的数据存储
分布式DRAM存储已经成为为分析应用程序提供快速数据访问的一个有吸引力的选择。为了加速这些存储的性能,研究人员提出使用RDMA技术。RDMA通过仔细地将资源设置与IO操作分离,并通过使用丰富的网络语义和卸载使IO操作快速,从而提供高带宽和低延迟的数据访问。尽管最近有兴趣,但在分布式环境中充分利用RDMA的潜力仍然是一项具有挑战性的任务。在本文中,我们介绍了RDMA Store或RStore,这是一种基于dram的数据存储,通过将RDMA的分离哲学扩展到分布式设置来提供高性能。RStore在我们的12台机器测试台上实现了高聚合带宽(705 Gb/s)和接近硬件的延迟。我们使用RStore独特的类似内存的API开发了一个分布式图形处理框架和一个键值排序器。图处理框架依赖于RStore进行低延迟图访问,在计算页面排名时,它比最先进的系统高出2.6 - 4.2倍。Key-Value排序器可以在31.7秒内对256 GB的数据进行排序,在类似的设置下,这比Hadoop TeraSort要好8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLOWPROPHET: Generic and Accurate Traffic Prediction for Data-Parallel Cluster Computing Improving the Energy Benefit for 802.3az Using Dynamic Coalescing Techniques Systematic Mining of Associated Server Herds for Malware Campaign Discovery Rain Bar: Robust Application-Driven Visual Communication Using Color Barcodes Optimizing Roadside Advertisement Dissemination in Vehicular Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1